Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Commit 6d475ff

Browse files
tonysyujkseppan
authored andcommitted
Fix radar_chart example.
Radar chart broken when using polygon spines. This was broken when the drawing of the axes spines was separated from the axes patch.
1 parent 6a02337 commit 6d475ff

File tree

1 file changed

+118
-87
lines changed

1 file changed

+118
-87
lines changed

examples/api/radar_chart.py

Lines changed: 118 additions & 87 deletions
Original file line numberDiff line numberDiff line change
@@ -1,77 +1,104 @@
11
import numpy as np
22

33
import matplotlib.pyplot as plt
4-
from matplotlib.projections.polar import PolarAxes
5-
from matplotlib.projections import register_projection
4+
from matplotlib.path import Path
5+
from matplotlib.spines import Spine
6+
from matplotlib.projections.polar import PolarAxes
7+
from matplotlib.projections import register_projection
68

7-
def radar_factory(num_vars, frame='circle'):
8-
"""Create a radar chart with `num_vars` axes."""
9-
# calculate evenly-spaced axis angles
10-
theta = 2*np.pi * np.linspace(0, 1-1./num_vars, num_vars)
11-
# rotate theta such that the first axis is at the top
12-
theta += np.pi/2
139

14-
def draw_poly_frame(self, x0, y0, r):
10+
def radar_factory(num_vars, frame='circle'):
11+
"""Create a radar chart with `num_vars` axes."""
12+
# calculate evenly-spaced axis angles
13+
theta = 2*np.pi * np.linspace(0, 1-1./num_vars, num_vars)
14+
# rotate theta such that the first axis is at the top
15+
theta += np.pi/2
16+
17+
def poly_verts(x0, y0, r):
1518
# TODO: use transforms to convert (x, y) to (r, theta)
16-
verts = [(r*np.cos(t) + x0, r*np.sin(t) + y0) for t in theta]
17-
return plt.Polygon(verts, closed=True, edgecolor='k')
18-
19-
def draw_circle_frame(self, x0, y0, r):
20-
return plt.Circle((x0, y0), r)
21-
22-
frame_dict = {'polygon': draw_poly_frame, 'circle': draw_circle_frame}
23-
if frame not in frame_dict:
24-
raise ValueError, 'unknown value for `frame`: %s' % frame
25-
26-
class RadarAxes(PolarAxes):
27-
"""Class for creating a radar chart (a.k.a. a spider or star chart)
28-
29-
http://en.wikipedia.org/wiki/Radar_chart
30-
"""
31-
name = 'radar'
32-
# use 1 line segment to connect specified points
33-
RESOLUTION = 1
34-
# define draw_frame method
35-
draw_frame = frame_dict[frame]
36-
37-
def fill(self, *args, **kwargs):
38-
"""Override fill so that line is closed by default"""
39-
closed = kwargs.pop('closed', True)
40-
return super(RadarAxes, self).fill(closed=closed, *args, **kwargs)
41-
42-
def plot(self, *args, **kwargs):
43-
"""Override plot so that line is closed by default"""
44-
lines = super(RadarAxes, self).plot(*args, **kwargs)
45-
for line in lines:
46-
self._close_line(line)
47-
48-
def _close_line(self, line):
49-
x, y = line.get_data()
50-
# FIXME: markers at x[0], y[0] get doubled-up
51-
if x[0] != x[-1]:
52-
x = np.concatenate((x, [x[0]]))
53-
y = np.concatenate((y, [y[0]]))
54-
line.set_data(x, y)
55-
56-
def set_varlabels(self, labels):
57-
self.set_thetagrids(theta * 180/np.pi, labels)
58-
59-
def _gen_axes_patch(self):
60-
x0, y0 = (0.5, 0.5)
61-
r = 0.5
19+
verts = [(r*np.cos(t) + x0, r*np.sin(t) + y0) for t in theta]
20+
return verts
21+
22+
def draw_poly_frame(self, x0, y0, r):
23+
verts = poly_verts(x0, y0, r)
24+
return plt.Polygon(verts, closed=True, edgecolor='k')
25+
26+
def draw_circle_frame(self, x0, y0, r):
27+
return plt.Circle((x0, y0), r)
28+
29+
frame_dict = {'polygon': draw_poly_frame, 'circle': draw_circle_frame}
30+
if frame not in frame_dict:
31+
raise ValueError, 'unknown value for `frame`: %s' % frame
32+
33+
class RadarAxes(PolarAxes):
34+
"""Class for creating a radar chart (a.k.a. a spider or star chart)
35+
36+
http://en.wikipedia.org/wiki/Radar_chart
37+
"""
38+
name = 'radar'
39+
# use 1 line segment to connect specified points
40+
RESOLUTION = 1
41+
# define draw_frame method
42+
draw_frame = frame_dict[frame]
43+
44+
def fill(self, *args, **kwargs):
45+
"""Override fill so that line is closed by default"""
46+
closed = kwargs.pop('closed', True)
47+
return super(RadarAxes, self).fill(closed=closed, *args, **kwargs)
48+
49+
def plot(self, *args, **kwargs):
50+
"""Override plot so that line is closed by default"""
51+
lines = super(RadarAxes, self).plot(*args, **kwargs)
52+
for line in lines:
53+
self._close_line(line)
54+
55+
def _close_line(self, line):
56+
x, y = line.get_data()
57+
# FIXME: markers at x[0], y[0] get doubled-up
58+
if x[0] != x[-1]:
59+
x = np.concatenate((x, [x[0]]))
60+
y = np.concatenate((y, [y[0]]))
61+
line.set_data(x, y)
62+
63+
def set_varlabels(self, labels):
64+
self.set_thetagrids(theta * 180/np.pi, labels)
65+
66+
def _gen_axes_patch(self):
67+
x0, y0 = (0.5, 0.5)
68+
r = 0.5
6269
return self.draw_frame(x0, y0, r)
63-
64-
register_projection(RadarAxes)
65-
return theta
70+
71+
def _gen_axes_spines(self):
72+
if frame == 'circle':
73+
return PolarAxes._gen_axes_spines(self)
74+
# The following is a hack to get the spines (i.e. the axes frame)
75+
# to draw correctly for a polygon frame.
76+
77+
# spine_type must be 'left', 'right', 'top', 'bottom', or `circle`.
78+
spine_type = 'circle'
79+
r = 0.5
80+
x0, y0 = (0.5, 0.5)
81+
#verts = [(t, r) for t in theta]
82+
verts = poly_verts(x0, y0, r)
83+
# close off polygon by repeating first vertex
84+
verts.append(verts[0])
85+
path = Path(verts)
86+
87+
spine = Spine(self, spine_type, path)
88+
spine.set_transform(self.transAxes)
89+
return {'polar': spine}
90+
91+
register_projection(RadarAxes)
92+
return theta
6693

6794

68-
if __name__ == '__main__':
69-
#The following data is from the Denver Aerosol Sources and Health study.
70-
#See doi:10.1016/j.atmosenv.2008.12.017
95+
if __name__ == '__main__':
96+
#The following data is from the Denver Aerosol Sources and Health study.
97+
#See doi:10.1016/j.atmosenv.2008.12.017
7198
#
7299
#The data are pollution source profile estimates for five modeled pollution
73100
#sources (e.g., cars, wood-burning, etc) that emit 7-9 chemical species.
74-
#The radar charts are experimented with here to see if we can nicely
101+
#The radar charts are experimented with here to see if we can nicely
75102
#visualize how the modeled source profiles change across four scenarios:
76103
# 1) No gas-phase species present, just seven particulate counts on
77104
# Sulfate
@@ -81,64 +108,68 @@ def _gen_axes_patch(self):
81108
# Organic Carbon fraction 2 (OC2)
82109
# Organic Carbon fraction 3 (OC3)
83110
# Pyrolized Organic Carbon (OP)
84-
# 2)Inclusion of gas-phase specie carbon monoxide (CO)
85-
# 3)Inclusion of gas-phase specie ozone (O3).
111+
# 2)Inclusion of gas-phase specie carbon monoxide (CO)
112+
# 3)Inclusion of gas-phase specie ozone (O3).
86113
# 4)Inclusion of both gas-phase speciesis present...
87114
N = 9
88-
theta = radar_factory(N)
89-
spoke_labels = ['Sulfate', 'Nitrate', 'EC', 'OC1', 'OC2', 'OC3', 'OP', 'CO',
115+
theta = radar_factory(N, frame='polygon')
116+
spoke_labels = ['Sulfate', 'Nitrate', 'EC', 'OC1', 'OC2', 'OC3', 'OP', 'CO',
90117
'O3']
91118
f1_base = [0.88, 0.01, 0.03, 0.03, 0.00, 0.06, 0.01, 0.00, 0.00]
92-
f1_CO = [0.88, 0.02, 0.02, 0.02, 0.00, 0.05, 0.00, 0.05, 0.00]
93-
f1_O3 = [0.89, 0.01, 0.07, 0.00, 0.00, 0.05, 0.00, 0.00, 0.03]
94-
f1_both = [0.87, 0.01, 0.08, 0.00, 0.00, 0.04, 0.00, 0.00, 0.01]
119+
f1_CO = [0.88, 0.02, 0.02, 0.02, 0.00, 0.05, 0.00, 0.05, 0.00]
120+
f1_O3 = [0.89, 0.01, 0.07, 0.00, 0.00, 0.05, 0.00, 0.00, 0.03]
121+
f1_both = [0.87, 0.01, 0.08, 0.00, 0.00, 0.04, 0.00, 0.00, 0.01]
95122

96123
f2_base = [0.07, 0.95, 0.04, 0.05, 0.00, 0.02, 0.01, 0.00, 0.00]
97-
f2_CO = [0.08, 0.94, 0.04, 0.02, 0.00, 0.01, 0.12, 0.04, 0.00]
98-
f2_O3 = [0.07, 0.95, 0.05, 0.04, 0.00, 0.02, 0.12, 0.00, 0.00]
99-
f2_both = [0.09, 0.95, 0.02, 0.03, 0.00, 0.01, 0.13, 0.06, 0.00]
124+
f2_CO = [0.08, 0.94, 0.04, 0.02, 0.00, 0.01, 0.12, 0.04, 0.00]
125+
f2_O3 = [0.07, 0.95, 0.05, 0.04, 0.00, 0.02, 0.12, 0.00, 0.00]
126+
f2_both = [0.09, 0.95, 0.02, 0.03, 0.00, 0.01, 0.13, 0.06, 0.00]
100127

101128
f3_base = [0.01, 0.02, 0.85, 0.19, 0.05, 0.10, 0.00, 0.00, 0.00]
102-
f3_CO = [0.01, 0.01, 0.79, 0.10, 0.00, 0.05, 0.00, 0.31, 0.00]
103-
f3_O3 = [0.01, 0.02, 0.86, 0.27, 0.16, 0.19, 0.00, 0.00, 0.00]
104-
f3_both = [0.01, 0.02, 0.71, 0.24, 0.13, 0.16, 0.00, 0.50, 0.00]
105-
129+
f3_CO = [0.01, 0.01, 0.79, 0.10, 0.00, 0.05, 0.00, 0.31, 0.00]
130+
f3_O3 = [0.01, 0.02, 0.86, 0.27, 0.16, 0.19, 0.00, 0.00, 0.00]
131+
f3_both = [0.01, 0.02, 0.71, 0.24, 0.13, 0.16, 0.00, 0.50, 0.00]
132+
106133
f4_base = [0.02, 0.01, 0.07, 0.01, 0.21, 0.12, 0.98, 0.00, 0.00]
107-
f4_CO = [0.00, 0.02, 0.03, 0.38, 0.31, 0.31, 0.00, 0.59, 0.00]
108-
f4_O3 = [0.01, 0.03, 0.00, 0.32, 0.29, 0.27, 0.00, 0.00, 0.95]
109-
f4_both = [0.01, 0.03, 0.00, 0.28, 0.24, 0.23, 0.00, 0.44, 0.88]
134+
f4_CO = [0.00, 0.02, 0.03, 0.38, 0.31, 0.31, 0.00, 0.59, 0.00]
135+
f4_O3 = [0.01, 0.03, 0.00, 0.32, 0.29, 0.27, 0.00, 0.00, 0.95]
136+
f4_both = [0.01, 0.03, 0.00, 0.28, 0.24, 0.23, 0.00, 0.44, 0.88]
110137

111138
f5_base = [0.01, 0.01, 0.02, 0.71, 0.74, 0.70, 0.00, 0.00, 0.00]
112-
f5_CO = [0.02, 0.02, 0.11, 0.47, 0.69, 0.58, 0.88, 0.00, 0.00]
113-
f5_O3 = [0.02, 0.00, 0.03, 0.37, 0.56, 0.47, 0.87, 0.00, 0.00]
114-
f5_both = [0.02, 0.00, 0.18, 0.45, 0.64, 0.55, 0.86, 0.00, 0.16]
139+
f5_CO = [0.02, 0.02, 0.11, 0.47, 0.69, 0.58, 0.88, 0.00, 0.00]
140+
f5_O3 = [0.02, 0.00, 0.03, 0.37, 0.56, 0.47, 0.87, 0.00, 0.00]
141+
f5_both = [0.02, 0.00, 0.18, 0.45, 0.64, 0.55, 0.86, 0.00, 0.16]
115142

116143
fig = plt.figure(figsize=(9,9))
117144
# adjust spacing around the subplots
118145
fig.subplots_adjust(wspace=0.25, hspace=0.20, top=0.85, bottom=0.05)
119146
title_list = ['Basecase', 'With CO', 'With O3', 'CO & O3']
120147
data = {'Basecase': [f1_base, f2_base, f3_base, f4_base, f5_base],
121148
'With CO': [f1_CO, f2_CO, f3_CO, f4_CO, f5_CO],
122-
'With O3': [f1_O3, f2_O3, f3_O3, f4_O3, f5_O3],
149+
'With O3': [f1_O3, f2_O3, f3_O3, f4_O3, f5_O3],
123150
'CO & O3': [f1_both, f2_both, f3_both, f4_both, f5_both]}
124151
colors = ['b', 'r', 'g', 'm', 'y']
125152
# chemicals range from 0 to 1
126153
radial_grid = [0.2, 0.4, 0.6, 0.8]
154+
127155
# If you don't care about the order, you can loop over data_dict.items()
128156
for n, title in enumerate(title_list):
129157
ax = fig.add_subplot(2, 2, n+1, projection='radar')
130158
plt.rgrids(radial_grid)
131159
ax.set_title(title, weight='bold', size='medium', position=(0.5, 1.1),
132160
horizontalalignment='center', verticalalignment='center')
133161
for d, color in zip(data[title], colors):
134-
ax.plot(theta, d, color=color)
135-
ax.fill(theta, d, facecolor=color, alpha=0.25)
162+
ax.plot(theta, d, color=color)
163+
ax.fill(theta, d, facecolor=color, alpha=0.25)
136164
ax.set_varlabels(spoke_labels)
165+
137166
# add legend relative to top-left plot
138167
plt.subplot(2,2,1)
139168
labels = ('Factor 1', 'Factor 2', 'Factor 3', 'Factor 4', 'Factor 5')
140169
legend = plt.legend(labels, loc=(0.9, .95), labelspacing=0.1)
141170
plt.setp(legend.get_texts(), fontsize='small')
142-
plt.figtext(0.5, 0.965, '5-Factor Solution Profiles Across Four Scenarios',
143-
ha='center', color='black', weight='bold', size='large')
171+
172+
plt.figtext(0.5, 0.965, '5-Factor Solution Profiles Across Four Scenarios',
173+
ha='center', color='black', weight='bold', size='large')
144174
plt.show()
175+

0 commit comments

Comments
 (0)