1
1
import numpy as np
2
2
3
3
import matplotlib .pyplot as plt
4
- from matplotlib .projections .polar import PolarAxes
5
- from matplotlib .projections import register_projection
4
+ from matplotlib .path import Path
5
+ from matplotlib .spines import Spine
6
+ from matplotlib .projections .polar import PolarAxes
7
+ from matplotlib .projections import register_projection
6
8
7
- def radar_factory (num_vars , frame = 'circle' ):
8
- """Create a radar chart with `num_vars` axes."""
9
- # calculate evenly-spaced axis angles
10
- theta = 2 * np .pi * np .linspace (0 , 1 - 1. / num_vars , num_vars )
11
- # rotate theta such that the first axis is at the top
12
- theta += np .pi / 2
13
9
14
- def draw_poly_frame (self , x0 , y0 , r ):
10
+ def radar_factory (num_vars , frame = 'circle' ):
11
+ """Create a radar chart with `num_vars` axes."""
12
+ # calculate evenly-spaced axis angles
13
+ theta = 2 * np .pi * np .linspace (0 , 1 - 1. / num_vars , num_vars )
14
+ # rotate theta such that the first axis is at the top
15
+ theta += np .pi / 2
16
+
17
+ def poly_verts (x0 , y0 , r ):
15
18
# TODO: use transforms to convert (x, y) to (r, theta)
16
- verts = [(r * np .cos (t ) + x0 , r * np .sin (t ) + y0 ) for t in theta ]
17
- return plt .Polygon (verts , closed = True , edgecolor = 'k' )
18
-
19
- def draw_circle_frame (self , x0 , y0 , r ):
20
- return plt .Circle ((x0 , y0 ), r )
21
-
22
- frame_dict = {'polygon' : draw_poly_frame , 'circle' : draw_circle_frame }
23
- if frame not in frame_dict :
24
- raise ValueError , 'unknown value for `frame`: %s' % frame
25
-
26
- class RadarAxes (PolarAxes ):
27
- """Class for creating a radar chart (a.k.a. a spider or star chart)
28
-
29
- http://en.wikipedia.org/wiki/Radar_chart
30
- """
31
- name = 'radar'
32
- # use 1 line segment to connect specified points
33
- RESOLUTION = 1
34
- # define draw_frame method
35
- draw_frame = frame_dict [frame ]
36
-
37
- def fill (self , * args , ** kwargs ):
38
- """Override fill so that line is closed by default"""
39
- closed = kwargs .pop ('closed' , True )
40
- return super (RadarAxes , self ).fill (closed = closed , * args , ** kwargs )
41
-
42
- def plot (self , * args , ** kwargs ):
43
- """Override plot so that line is closed by default"""
44
- lines = super (RadarAxes , self ).plot (* args , ** kwargs )
45
- for line in lines :
46
- self ._close_line (line )
47
-
48
- def _close_line (self , line ):
49
- x , y = line .get_data ()
50
- # FIXME: markers at x[0], y[0] get doubled-up
51
- if x [0 ] != x [- 1 ]:
52
- x = np .concatenate ((x , [x [0 ]]))
53
- y = np .concatenate ((y , [y [0 ]]))
54
- line .set_data (x , y )
55
-
56
- def set_varlabels (self , labels ):
57
- self .set_thetagrids (theta * 180 / np .pi , labels )
58
-
59
- def _gen_axes_patch (self ):
60
- x0 , y0 = (0.5 , 0.5 )
61
- r = 0.5
19
+ verts = [(r * np .cos (t ) + x0 , r * np .sin (t ) + y0 ) for t in theta ]
20
+ return verts
21
+
22
+ def draw_poly_frame (self , x0 , y0 , r ):
23
+ verts = poly_verts (x0 , y0 , r )
24
+ return plt .Polygon (verts , closed = True , edgecolor = 'k' )
25
+
26
+ def draw_circle_frame (self , x0 , y0 , r ):
27
+ return plt .Circle ((x0 , y0 ), r )
28
+
29
+ frame_dict = {'polygon' : draw_poly_frame , 'circle' : draw_circle_frame }
30
+ if frame not in frame_dict :
31
+ raise ValueError , 'unknown value for `frame`: %s' % frame
32
+
33
+ class RadarAxes (PolarAxes ):
34
+ """Class for creating a radar chart (a.k.a. a spider or star chart)
35
+
36
+ http://en.wikipedia.org/wiki/Radar_chart
37
+ """
38
+ name = 'radar'
39
+ # use 1 line segment to connect specified points
40
+ RESOLUTION = 1
41
+ # define draw_frame method
42
+ draw_frame = frame_dict [frame ]
43
+
44
+ def fill (self , * args , ** kwargs ):
45
+ """Override fill so that line is closed by default"""
46
+ closed = kwargs .pop ('closed' , True )
47
+ return super (RadarAxes , self ).fill (closed = closed , * args , ** kwargs )
48
+
49
+ def plot (self , * args , ** kwargs ):
50
+ """Override plot so that line is closed by default"""
51
+ lines = super (RadarAxes , self ).plot (* args , ** kwargs )
52
+ for line in lines :
53
+ self ._close_line (line )
54
+
55
+ def _close_line (self , line ):
56
+ x , y = line .get_data ()
57
+ # FIXME: markers at x[0], y[0] get doubled-up
58
+ if x [0 ] != x [- 1 ]:
59
+ x = np .concatenate ((x , [x [0 ]]))
60
+ y = np .concatenate ((y , [y [0 ]]))
61
+ line .set_data (x , y )
62
+
63
+ def set_varlabels (self , labels ):
64
+ self .set_thetagrids (theta * 180 / np .pi , labels )
65
+
66
+ def _gen_axes_patch (self ):
67
+ x0 , y0 = (0.5 , 0.5 )
68
+ r = 0.5
62
69
return self .draw_frame (x0 , y0 , r )
63
-
64
- register_projection (RadarAxes )
65
- return theta
70
+
71
+ def _gen_axes_spines (self ):
72
+ if frame == 'circle' :
73
+ return PolarAxes ._gen_axes_spines (self )
74
+ # The following is a hack to get the spines (i.e. the axes frame)
75
+ # to draw correctly for a polygon frame.
76
+
77
+ # spine_type must be 'left', 'right', 'top', 'bottom', or `circle`.
78
+ spine_type = 'circle'
79
+ r = 0.5
80
+ x0 , y0 = (0.5 , 0.5 )
81
+ #verts = [(t, r) for t in theta]
82
+ verts = poly_verts (x0 , y0 , r )
83
+ # close off polygon by repeating first vertex
84
+ verts .append (verts [0 ])
85
+ path = Path (verts )
86
+
87
+ spine = Spine (self , spine_type , path )
88
+ spine .set_transform (self .transAxes )
89
+ return {'polar' : spine }
90
+
91
+ register_projection (RadarAxes )
92
+ return theta
66
93
67
94
68
- if __name__ == '__main__' :
69
- #The following data is from the Denver Aerosol Sources and Health study.
70
- #See doi:10.1016/j.atmosenv.2008.12.017
95
+ if __name__ == '__main__' :
96
+ #The following data is from the Denver Aerosol Sources and Health study.
97
+ #See doi:10.1016/j.atmosenv.2008.12.017
71
98
#
72
99
#The data are pollution source profile estimates for five modeled pollution
73
100
#sources (e.g., cars, wood-burning, etc) that emit 7-9 chemical species.
74
- #The radar charts are experimented with here to see if we can nicely
101
+ #The radar charts are experimented with here to see if we can nicely
75
102
#visualize how the modeled source profiles change across four scenarios:
76
103
# 1) No gas-phase species present, just seven particulate counts on
77
104
# Sulfate
@@ -81,64 +108,68 @@ def _gen_axes_patch(self):
81
108
# Organic Carbon fraction 2 (OC2)
82
109
# Organic Carbon fraction 3 (OC3)
83
110
# Pyrolized Organic Carbon (OP)
84
- # 2)Inclusion of gas-phase specie carbon monoxide (CO)
85
- # 3)Inclusion of gas-phase specie ozone (O3).
111
+ # 2)Inclusion of gas-phase specie carbon monoxide (CO)
112
+ # 3)Inclusion of gas-phase specie ozone (O3).
86
113
# 4)Inclusion of both gas-phase speciesis present...
87
114
N = 9
88
- theta = radar_factory (N )
89
- spoke_labels = ['Sulfate' , 'Nitrate' , 'EC' , 'OC1' , 'OC2' , 'OC3' , 'OP' , 'CO' ,
115
+ theta = radar_factory (N , frame = 'polygon' )
116
+ spoke_labels = ['Sulfate' , 'Nitrate' , 'EC' , 'OC1' , 'OC2' , 'OC3' , 'OP' , 'CO' ,
90
117
'O3' ]
91
118
f1_base = [0.88 , 0.01 , 0.03 , 0.03 , 0.00 , 0.06 , 0.01 , 0.00 , 0.00 ]
92
- f1_CO = [0.88 , 0.02 , 0.02 , 0.02 , 0.00 , 0.05 , 0.00 , 0.05 , 0.00 ]
93
- f1_O3 = [0.89 , 0.01 , 0.07 , 0.00 , 0.00 , 0.05 , 0.00 , 0.00 , 0.03 ]
94
- f1_both = [0.87 , 0.01 , 0.08 , 0.00 , 0.00 , 0.04 , 0.00 , 0.00 , 0.01 ]
119
+ f1_CO = [0.88 , 0.02 , 0.02 , 0.02 , 0.00 , 0.05 , 0.00 , 0.05 , 0.00 ]
120
+ f1_O3 = [0.89 , 0.01 , 0.07 , 0.00 , 0.00 , 0.05 , 0.00 , 0.00 , 0.03 ]
121
+ f1_both = [0.87 , 0.01 , 0.08 , 0.00 , 0.00 , 0.04 , 0.00 , 0.00 , 0.01 ]
95
122
96
123
f2_base = [0.07 , 0.95 , 0.04 , 0.05 , 0.00 , 0.02 , 0.01 , 0.00 , 0.00 ]
97
- f2_CO = [0.08 , 0.94 , 0.04 , 0.02 , 0.00 , 0.01 , 0.12 , 0.04 , 0.00 ]
98
- f2_O3 = [0.07 , 0.95 , 0.05 , 0.04 , 0.00 , 0.02 , 0.12 , 0.00 , 0.00 ]
99
- f2_both = [0.09 , 0.95 , 0.02 , 0.03 , 0.00 , 0.01 , 0.13 , 0.06 , 0.00 ]
124
+ f2_CO = [0.08 , 0.94 , 0.04 , 0.02 , 0.00 , 0.01 , 0.12 , 0.04 , 0.00 ]
125
+ f2_O3 = [0.07 , 0.95 , 0.05 , 0.04 , 0.00 , 0.02 , 0.12 , 0.00 , 0.00 ]
126
+ f2_both = [0.09 , 0.95 , 0.02 , 0.03 , 0.00 , 0.01 , 0.13 , 0.06 , 0.00 ]
100
127
101
128
f3_base = [0.01 , 0.02 , 0.85 , 0.19 , 0.05 , 0.10 , 0.00 , 0.00 , 0.00 ]
102
- f3_CO = [0.01 , 0.01 , 0.79 , 0.10 , 0.00 , 0.05 , 0.00 , 0.31 , 0.00 ]
103
- f3_O3 = [0.01 , 0.02 , 0.86 , 0.27 , 0.16 , 0.19 , 0.00 , 0.00 , 0.00 ]
104
- f3_both = [0.01 , 0.02 , 0.71 , 0.24 , 0.13 , 0.16 , 0.00 , 0.50 , 0.00 ]
105
-
129
+ f3_CO = [0.01 , 0.01 , 0.79 , 0.10 , 0.00 , 0.05 , 0.00 , 0.31 , 0.00 ]
130
+ f3_O3 = [0.01 , 0.02 , 0.86 , 0.27 , 0.16 , 0.19 , 0.00 , 0.00 , 0.00 ]
131
+ f3_both = [0.01 , 0.02 , 0.71 , 0.24 , 0.13 , 0.16 , 0.00 , 0.50 , 0.00 ]
132
+
106
133
f4_base = [0.02 , 0.01 , 0.07 , 0.01 , 0.21 , 0.12 , 0.98 , 0.00 , 0.00 ]
107
- f4_CO = [0.00 , 0.02 , 0.03 , 0.38 , 0.31 , 0.31 , 0.00 , 0.59 , 0.00 ]
108
- f4_O3 = [0.01 , 0.03 , 0.00 , 0.32 , 0.29 , 0.27 , 0.00 , 0.00 , 0.95 ]
109
- f4_both = [0.01 , 0.03 , 0.00 , 0.28 , 0.24 , 0.23 , 0.00 , 0.44 , 0.88 ]
134
+ f4_CO = [0.00 , 0.02 , 0.03 , 0.38 , 0.31 , 0.31 , 0.00 , 0.59 , 0.00 ]
135
+ f4_O3 = [0.01 , 0.03 , 0.00 , 0.32 , 0.29 , 0.27 , 0.00 , 0.00 , 0.95 ]
136
+ f4_both = [0.01 , 0.03 , 0.00 , 0.28 , 0.24 , 0.23 , 0.00 , 0.44 , 0.88 ]
110
137
111
138
f5_base = [0.01 , 0.01 , 0.02 , 0.71 , 0.74 , 0.70 , 0.00 , 0.00 , 0.00 ]
112
- f5_CO = [0.02 , 0.02 , 0.11 , 0.47 , 0.69 , 0.58 , 0.88 , 0.00 , 0.00 ]
113
- f5_O3 = [0.02 , 0.00 , 0.03 , 0.37 , 0.56 , 0.47 , 0.87 , 0.00 , 0.00 ]
114
- f5_both = [0.02 , 0.00 , 0.18 , 0.45 , 0.64 , 0.55 , 0.86 , 0.00 , 0.16 ]
139
+ f5_CO = [0.02 , 0.02 , 0.11 , 0.47 , 0.69 , 0.58 , 0.88 , 0.00 , 0.00 ]
140
+ f5_O3 = [0.02 , 0.00 , 0.03 , 0.37 , 0.56 , 0.47 , 0.87 , 0.00 , 0.00 ]
141
+ f5_both = [0.02 , 0.00 , 0.18 , 0.45 , 0.64 , 0.55 , 0.86 , 0.00 , 0.16 ]
115
142
116
143
fig = plt .figure (figsize = (9 ,9 ))
117
144
# adjust spacing around the subplots
118
145
fig .subplots_adjust (wspace = 0.25 , hspace = 0.20 , top = 0.85 , bottom = 0.05 )
119
146
title_list = ['Basecase' , 'With CO' , 'With O3' , 'CO & O3' ]
120
147
data = {'Basecase' : [f1_base , f2_base , f3_base , f4_base , f5_base ],
121
148
'With CO' : [f1_CO , f2_CO , f3_CO , f4_CO , f5_CO ],
122
- 'With O3' : [f1_O3 , f2_O3 , f3_O3 , f4_O3 , f5_O3 ],
149
+ 'With O3' : [f1_O3 , f2_O3 , f3_O3 , f4_O3 , f5_O3 ],
123
150
'CO & O3' : [f1_both , f2_both , f3_both , f4_both , f5_both ]}
124
151
colors = ['b' , 'r' , 'g' , 'm' , 'y' ]
125
152
# chemicals range from 0 to 1
126
153
radial_grid = [0.2 , 0.4 , 0.6 , 0.8 ]
154
+
127
155
# If you don't care about the order, you can loop over data_dict.items()
128
156
for n , title in enumerate (title_list ):
129
157
ax = fig .add_subplot (2 , 2 , n + 1 , projection = 'radar' )
130
158
plt .rgrids (radial_grid )
131
159
ax .set_title (title , weight = 'bold' , size = 'medium' , position = (0.5 , 1.1 ),
132
160
horizontalalignment = 'center' , verticalalignment = 'center' )
133
161
for d , color in zip (data [title ], colors ):
134
- ax .plot (theta , d , color = color )
135
- ax .fill (theta , d , facecolor = color , alpha = 0.25 )
162
+ ax .plot (theta , d , color = color )
163
+ ax .fill (theta , d , facecolor = color , alpha = 0.25 )
136
164
ax .set_varlabels (spoke_labels )
165
+
137
166
# add legend relative to top-left plot
138
167
plt .subplot (2 ,2 ,1 )
139
168
labels = ('Factor 1' , 'Factor 2' , 'Factor 3' , 'Factor 4' , 'Factor 5' )
140
169
legend = plt .legend (labels , loc = (0.9 , .95 ), labelspacing = 0.1 )
141
170
plt .setp (legend .get_texts (), fontsize = 'small' )
142
- plt .figtext (0.5 , 0.965 , '5-Factor Solution Profiles Across Four Scenarios' ,
143
- ha = 'center' , color = 'black' , weight = 'bold' , size = 'large' )
171
+
172
+ plt .figtext (0.5 , 0.965 , '5-Factor Solution Profiles Across Four Scenarios' ,
173
+ ha = 'center' , color = 'black' , weight = 'bold' , size = 'large' )
144
174
plt .show ()
175
+
0 commit comments