File tree 3 files changed +6
-6
lines changed
images_contours_and_fields 3 files changed +6
-6
lines changed Original file line number Diff line number Diff line change 138
138
139
139
###############################################################################
140
140
# You can specify whether images should be plotted with the array origin
141
- # x[0,0] in the upper left or upper right by using the origin parameter.
141
+ # x[0,0] in the upper left or lower right by using the origin parameter.
142
142
# You can also control the default be setting image.origin in your
143
- # matplotlibrc file; see http://matplotlib.org/ matplotlibrc
143
+ # :ref:` matplotlibrc file <customizing-with- matplotlibrc-files>`
144
144
145
145
x = np .arange (120 ).reshape ((10 , 12 ))
146
146
Original file line number Diff line number Diff line change @@ -93,7 +93,7 @@ def test2(ax):
93
93
#p_fancy.set_boxstyle("round", pad=0.1, rounding_size=0.2)
94
94
95
95
ax .text (0.1 , 0.8 ,
96
- ' boxstyle="round,pad=0.1\n rounding \\ _size =0.2"' ,
96
+ ' boxstyle="round,pad=0.1\n rounding_size =0.2"' ,
97
97
size = 10 , transform = ax .transAxes )
98
98
99
99
# draws control points for the fancy box.
@@ -118,7 +118,7 @@ def test3(ax):
118
118
ax .add_patch (p_fancy )
119
119
120
120
ax .text (0.1 , 0.8 ,
121
- ' boxstyle="round,pad=0.1"\n mutation \\ _scale =2' ,
121
+ ' boxstyle="round,pad=0.1"\n mutation_scale =2' ,
122
122
size = 10 , transform = ax .transAxes )
123
123
124
124
# draws control points for the fancy box.
@@ -152,7 +152,7 @@ def test4(ax):
152
152
ax .add_patch (p_fancy )
153
153
154
154
ax .text (0.1 , 0.8 ,
155
- ' boxstyle="round,pad=0.3"\n mutation \\ _aspect =.5' ,
155
+ ' boxstyle="round,pad=0.3"\n mutation_aspect =.5' ,
156
156
size = 10 , transform = ax .transAxes )
157
157
158
158
draw_bbox (ax , bb )
Original file line number Diff line number Diff line change 5
5
6
6
Plotting Power Spectral Density (PSD) in Matplotlib.
7
7
8
- The PSD is a common plot in the field of signal processing. Numpy has
8
+ The PSD is a common plot in the field of signal processing. NumPy has
9
9
many useful libraries for computing a PSD. Below we demo a few examples
10
10
of how this can be accomplished and visualized with Matplotlib.
11
11
"""
You can’t perform that action at this time.
0 commit comments