@@ -4193,7 +4193,7 @@ def hexbin(self, x, y, C=None, gridsize=100, bins=None,
4193
4193
If *C* is specified, it specifies values at the coordinate
4194
4194
(x[i],y[i]). These values are accumulated for each hexagonal
4195
4195
bin and then reduced according to *reduce_C_function*, which
4196
- defaults to numpy's mean function (np .mean). (If *C* is
4196
+ defaults to numpy's mean function (`numpy .mean` ). (If *C* is
4197
4197
specified, it must also be a 1-D sequence of the same length
4198
4198
as *x* and *y*.)
4199
4199
@@ -4211,7 +4211,7 @@ def hexbin(self, x, y, C=None, gridsize=100, bins=None,
4211
4211
tuple with two elements specifying the number of hexagons
4212
4212
in the *x*-direction and the *y*-direction.
4213
4213
4214
- bins : { 'log'} or int or sequence, optional, default is *None*
4214
+ bins : 'log' or int or sequence, optional, default is *None*
4215
4215
If *None*, no binning is applied; the color of each hexagon
4216
4216
directly corresponds to its count value.
4217
4217
@@ -4287,11 +4287,9 @@ def hexbin(self, x, y, C=None, gridsize=100, bins=None,
4287
4287
4288
4288
Returns
4289
4289
-------
4290
- object
4291
- a :class:`~matplotlib.collections.PolyCollection` instance; use
4292
- :meth:`~matplotlib.collections.PolyCollection.get_array` on
4293
- this :class:`~matplotlib.collections.PolyCollection` to get
4294
- the counts in each hexagon.
4290
+ polycollection
4291
+ A `.PolyCollection` instance; use `.PolyCollection.get_array` on
4292
+ this to get the counts in each hexagon.
4295
4293
4296
4294
If *marginals* is *True*, horizontal
4297
4295
bar and vertical bar (both PolyCollections) will be attached
@@ -6060,7 +6058,7 @@ def hist(self, x, bins=None, range=None, density=None, weights=None,
6060
6058
Input values, this takes either a single array or a sequence of
6061
6059
arrays which are not required to be of the same length
6062
6060
6063
- bins : integer or sequence or 'auto', optional
6061
+ bins : int or sequence or 'auto', optional
6064
6062
If an integer is given, ``bins + 1`` bin edges are calculated and
6065
6063
returned, consistent with :func:`numpy.histogram`.
6066
6064
@@ -6094,7 +6092,7 @@ def hist(self, x, bins=None, range=None, density=None, weights=None,
6094
6092
6095
6093
Default is ``None``
6096
6094
6097
- density : boolean , optional
6095
+ density : bool , optional
6098
6096
If ``True``, the first element of the return tuple will
6099
6097
be the counts normalized to form a probability density, i.e.,
6100
6098
the area (or integral) under the histogram will sum to 1.
@@ -6118,7 +6116,7 @@ def hist(self, x, bins=None, range=None, density=None, weights=None,
6118
6116
6119
6117
Default is ``None``
6120
6118
6121
- cumulative : boolean , optional
6119
+ cumulative : bool , optional
6122
6120
If ``True``, then a histogram is computed where each bin gives the
6123
6121
counts in that bin plus all bins for smaller values. The last bin
6124
6122
gives the total number of datapoints. If *normed* or *density*
@@ -6178,7 +6176,7 @@ def hist(self, x, bins=None, range=None, density=None, weights=None,
6178
6176
6179
6177
Default is ``None``
6180
6178
6181
- log : boolean , optional
6179
+ log : bool , optional
6182
6180
If ``True``, the histogram axis will be set to a log scale. If
6183
6181
*log* is ``True`` and *x* is a 1D array, empty bins will be
6184
6182
filtered out and only the non-empty ``(n, bins, patches)``
@@ -6192,14 +6190,14 @@ def hist(self, x, bins=None, range=None, density=None, weights=None,
6192
6190
6193
6191
Default is ``None``
6194
6192
6195
- label : string or None, optional
6193
+ label : str or None, optional
6196
6194
String, or sequence of strings to match multiple datasets. Bar
6197
6195
charts yield multiple patches per dataset, but only the first gets
6198
6196
the label, so that the legend command will work as expected.
6199
6197
6200
6198
default is ``None``
6201
6199
6202
- stacked : boolean , optional
6200
+ stacked : bool , optional
6203
6201
If ``True``, multiple data are stacked on top of each other If
6204
6202
``False`` multiple data are arranged side by side if histtype is
6205
6203
'bar' or on top of each other if histtype is 'step'
@@ -6553,10 +6551,10 @@ def hist2d(self, x, y, bins=10, range=None, normed=False, weights=None,
6553
6551
6554
6552
Parameters
6555
6553
----------
6556
- x, y: array_like, shape (n, )
6554
+ x, y : array_like, shape (n, )
6557
6555
Input values
6558
6556
6559
- bins: [ None | int | [int, int] | array_like | [array, array] ]
6557
+ bins : None or int or [int, int] or array_like or [array, array]
6560
6558
6561
6559
The bin specification:
6562
6560
@@ -6580,7 +6578,7 @@ def hist2d(self, x, y, bins=10, range=None, normed=False, weights=None,
6580
6578
xmax], [ymin, ymax]]. All values outside of this range will be
6581
6579
considered outliers and not tallied in the histogram.
6582
6580
6583
- normed : boolean , optional, default: False
6581
+ normed : bool , optional, default: False
6584
6582
Normalize histogram.
6585
6583
6586
6584
weights : array_like, shape (n, ), optional, default: None
@@ -6610,7 +6608,7 @@ def hist2d(self, x, y, bins=10, range=None, normed=False, weights=None,
6610
6608
6611
6609
Other Parameters
6612
6610
----------------
6613
- cmap : { Colormap, string} , optional
6611
+ cmap : Colormap or str , optional
6614
6612
A :class:`matplotlib.colors.Colormap` instance. If not set, use rc
6615
6613
settings.
6616
6614
@@ -6619,7 +6617,7 @@ def hist2d(self, x, y, bins=10, range=None, normed=False, weights=None,
6619
6617
scale luminance data to ``[0, 1]``. If not set, defaults to
6620
6618
``Normalize()``.
6621
6619
6622
- vmin/vmax : { None, scalar} , optional
6620
+ vmin/vmax : None or scalar, optional
6623
6621
Arguments passed to the `Normalize` instance.
6624
6622
6625
6623
alpha : ``0 <= scalar <= 1`` or ``None``, optional
0 commit comments