Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Commit a2a1b0a

Browse files
authored
Merge pull request #22698 from oscargus/fixdoclinks
Correct cross-references in documentation
2 parents d7a4751 + 442e708 commit a2a1b0a

File tree

4 files changed

+12
-10
lines changed

4 files changed

+12
-10
lines changed

lib/matplotlib/axes/_axes.py

Lines changed: 3 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -7869,8 +7869,9 @@ def violinplot(self, dataset, positions=None, vert=True, widths=0.5,
78697869
The method used to calculate the estimator bandwidth. This can be
78707870
'scott', 'silverman', a scalar constant or a callable. If a
78717871
scalar, this will be used directly as `kde.factor`. If a
7872-
callable, it should take a `GaussianKDE` instance as its only
7873-
parameter and return a scalar. If None (default), 'scott' is used.
7872+
callable, it should take a `matplotlib.mlab.GaussianKDE` instance as
7873+
its only parameter and return a scalar. If None (default), 'scott'
7874+
is used.
78747875
78757876
data : indexable object, optional
78767877
DATA_PARAMETER_PLACEHOLDER

lib/matplotlib/backend_tools.py

Lines changed: 5 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1006,8 +1006,8 @@ def add_tools_to_manager(toolmanager, tools=default_tools):
10061006
toolmanager : `.backend_managers.ToolManager`
10071007
Manager to which the tools are added.
10081008
tools : {str: class_like}, optional
1009-
The tools to add in a {name: tool} dict, see `add_tool` for more
1010-
info.
1009+
The tools to add in a {name: tool} dict, see
1010+
`.backend_managers.ToolManager.add_tool` for more info.
10111011
"""
10121012

10131013
for name, tool in tools.items():
@@ -1021,11 +1021,12 @@ def add_tools_to_container(container, tools=default_toolbar_tools):
10211021
Parameters
10221022
----------
10231023
container : Container
1024-
`backend_bases.ToolContainerBase` object that will get the tools added.
1024+
`.backend_bases.ToolContainerBase` object that will get the tools
1025+
added.
10251026
tools : list, optional
10261027
List in the form ``[[group1, [tool1, tool2 ...]], [group2, [...]]]``
10271028
where the tools ``[tool1, tool2, ...]`` will display in group1.
1028-
See `add_tool` for details.
1029+
See `.backend_bases.ToolContainerBase.add_tool` for details.
10291030
"""
10301031

10311032
for group, grouptools in tools:

lib/matplotlib/path.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -218,7 +218,7 @@ def codes(self):
218218
code is one of `STOP`, `MOVETO`, `LINETO`, `CURVE3`, `CURVE4`
219219
or `CLOSEPOLY`. For codes that correspond to more than one
220220
vertex (`CURVE3` and `CURVE4`), that code will be repeated so
221-
that the length of `self.vertices` and `self.codes` is always
221+
that the length of `vertices` and `codes` is always
222222
the same.
223223
"""
224224
return self._codes

lib/matplotlib/transforms.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -1474,7 +1474,7 @@ def transform(self, values):
14741474
Returns
14751475
-------
14761476
array
1477-
The output values as NumPy array of length :attr:`input_dims` or
1477+
The output values as NumPy array of length :attr:`output_dims` or
14781478
shape (N x :attr:`output_dims`), depending on the input.
14791479
"""
14801480
# Ensure that values is a 2d array (but remember whether
@@ -1519,7 +1519,7 @@ def transform_affine(self, values):
15191519
Returns
15201520
-------
15211521
array
1522-
The output values as NumPy array of length :attr:`input_dims` or
1522+
The output values as NumPy array of length :attr:`output_dims` or
15231523
shape (N x :attr:`output_dims`), depending on the input.
15241524
"""
15251525
return self.get_affine().transform(values)
@@ -1544,7 +1544,7 @@ def transform_non_affine(self, values):
15441544
Returns
15451545
-------
15461546
array
1547-
The output values as NumPy array of length :attr:`input_dims` or
1547+
The output values as NumPy array of length :attr:`output_dims` or
15481548
shape (N x :attr:`output_dims`), depending on the input.
15491549
"""
15501550
return values

0 commit comments

Comments
 (0)