Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Commit ad0a4c0

Browse files
authored
Merge pull request #23796 from gustavi/gustavi-patch-1
Remove useless semicolons in "Introductory / Basic Usage" tutorial
2 parents 2d18bba + aa21d1c commit ad0a4c0

File tree

1 file changed

+16
-16
lines changed

1 file changed

+16
-16
lines changed

tutorials/introductory/quick_start.py

Lines changed: 16 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -28,7 +28,7 @@
2828
# `.Axes.plot` to draw some data on the Axes:
2929

3030
fig, ax = plt.subplots() # Create a figure containing a single axes.
31-
ax.plot([1, 2, 3, 4], [1, 4, 2, 3]); # Plot some data on the axes.
31+
ax.plot([1, 2, 3, 4], [1, 4, 2, 3]) # Plot some data on the axes.
3232

3333
###############################################################################
3434
# .. _figure_parts:
@@ -126,7 +126,7 @@
126126
fig, ax = plt.subplots(figsize=(5, 2.7), layout='constrained')
127127
ax.scatter('a', 'b', c='c', s='d', data=data)
128128
ax.set_xlabel('entry a')
129-
ax.set_ylabel('entry b');
129+
ax.set_ylabel('entry b')
130130

131131
##############################################################################
132132
# .. _coding_styles:
@@ -159,7 +159,7 @@
159159
ax.set_xlabel('x label') # Add an x-label to the axes.
160160
ax.set_ylabel('y label') # Add a y-label to the axes.
161161
ax.set_title("Simple Plot") # Add a title to the axes.
162-
ax.legend(); # Add a legend.
162+
ax.legend() # Add a legend.
163163

164164
###############################################################################
165165
# or the pyplot-style:
@@ -173,7 +173,7 @@
173173
plt.xlabel('x label')
174174
plt.ylabel('y label')
175175
plt.title("Simple Plot")
176-
plt.legend();
176+
plt.legend()
177177

178178
###############################################################################
179179
# (In addition, there is a third approach, for the case when embedding
@@ -213,7 +213,7 @@ def my_plotter(ax, data1, data2, param_dict):
213213
data1, data2, data3, data4 = np.random.randn(4, 100) # make 4 random data sets
214214
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(5, 2.7))
215215
my_plotter(ax1, data1, data2, {'marker': 'x'})
216-
my_plotter(ax2, data3, data4, {'marker': 'o'});
216+
my_plotter(ax2, data3, data4, {'marker': 'o'})
217217

218218
###############################################################################
219219
# Note that if you want to install these as a python package, or any other
@@ -235,7 +235,7 @@ def my_plotter(ax, data1, data2, param_dict):
235235
x = np.arange(len(data1))
236236
ax.plot(x, np.cumsum(data1), color='blue', linewidth=3, linestyle='--')
237237
l, = ax.plot(x, np.cumsum(data2), color='orange', linewidth=2)
238-
l.set_linestyle(':');
238+
l.set_linestyle(':')
239239

240240
###############################################################################
241241
# Colors
@@ -248,7 +248,7 @@ def my_plotter(ax, data1, data2, param_dict):
248248
# from the interior:
249249

250250
fig, ax = plt.subplots(figsize=(5, 2.7))
251-
ax.scatter(data1, data2, s=50, facecolor='C0', edgecolor='k');
251+
ax.scatter(data1, data2, s=50, facecolor='C0', edgecolor='k')
252252

253253
###############################################################################
254254
# Linewidths, linestyles, and markersizes
@@ -272,7 +272,7 @@ def my_plotter(ax, data1, data2, param_dict):
272272
ax.plot(data2, 'd', label='data2')
273273
ax.plot(data3, 'v', label='data3')
274274
ax.plot(data4, 's', label='data4')
275-
ax.legend();
275+
ax.legend()
276276

277277
###############################################################################
278278
#
@@ -298,7 +298,7 @@ def my_plotter(ax, data1, data2, param_dict):
298298
ax.set_title('Aardvark lengths\n (not really)')
299299
ax.text(75, .025, r'$\mu=115,\ \sigma=15$')
300300
ax.axis([55, 175, 0, 0.03])
301-
ax.grid(True);
301+
ax.grid(True)
302302

303303
###############################################################################
304304
# All of the `~.Axes.text` functions return a `matplotlib.text.Text`
@@ -342,7 +342,7 @@ def my_plotter(ax, data1, data2, param_dict):
342342
ax.annotate('local max', xy=(2, 1), xytext=(3, 1.5),
343343
arrowprops=dict(facecolor='black', shrink=0.05))
344344

345-
ax.set_ylim(-2, 2);
345+
ax.set_ylim(-2, 2)
346346

347347
###############################################################################
348348
# In this basic example, both *xy* and *xytext* are in data coordinates.
@@ -360,7 +360,7 @@ def my_plotter(ax, data1, data2, param_dict):
360360
ax.plot(np.arange(len(data1)), data1, label='data1')
361361
ax.plot(np.arange(len(data2)), data2, label='data2')
362362
ax.plot(np.arange(len(data3)), data3, 'd', label='data3')
363-
ax.legend();
363+
ax.legend()
364364

365365
##############################################################################
366366
# Legends in Matplotlib are quite flexible in layout, placement, and what
@@ -391,7 +391,7 @@ def my_plotter(ax, data1, data2, param_dict):
391391
axs[0].plot(xdata, data)
392392

393393
axs[1].set_yscale('log')
394-
axs[1].plot(xdata, data);
394+
axs[1].plot(xdata, data)
395395

396396
##############################################################################
397397
# The scale sets the mapping from data values to spacing along the Axis. This
@@ -413,7 +413,7 @@ def my_plotter(ax, data1, data2, param_dict):
413413
axs[1].plot(xdata, data1)
414414
axs[1].set_xticks(np.arange(0, 100, 30), ['zero', '30', 'sixty', '90'])
415415
axs[1].set_yticks([-1.5, 0, 1.5]) # note that we don't need to specify labels
416-
axs[1].set_title('Manual ticks');
416+
axs[1].set_title('Manual ticks')
417417

418418
##############################################################################
419419
# Different scales can have different locators and formatters; for instance
@@ -435,7 +435,7 @@ def my_plotter(ax, data1, data2, param_dict):
435435
data = np.cumsum(np.random.randn(len(dates)))
436436
ax.plot(dates, data)
437437
cdf = mpl.dates.ConciseDateFormatter(ax.xaxis.get_major_locator())
438-
ax.xaxis.set_major_formatter(cdf);
438+
ax.xaxis.set_major_formatter(cdf)
439439

440440
##############################################################################
441441
# For more information see the date examples
@@ -447,7 +447,7 @@ def my_plotter(ax, data1, data2, param_dict):
447447
fig, ax = plt.subplots(figsize=(5, 2.7), layout='constrained')
448448
categories = ['turnips', 'rutabaga', 'cucumber', 'pumpkins']
449449

450-
ax.bar(categories, np.random.rand(len(categories)));
450+
ax.bar(categories, np.random.rand(len(categories)))
451451

452452
##############################################################################
453453
# One caveat about categorical plotting is that some methods of parsing
@@ -561,7 +561,7 @@ def my_plotter(ax, data1, data2, param_dict):
561561
['lowleft', 'right']], layout='constrained')
562562
axd['upleft'].set_title('upleft')
563563
axd['lowleft'].set_title('lowleft')
564-
axd['right'].set_title('right');
564+
axd['right'].set_title('right')
565565

566566
###############################################################################
567567
# Matplotlib has quite sophisticated tools for arranging Axes: See

0 commit comments

Comments
 (0)