|
3 | 3 | Interactive Adjustment of Colormap Range
|
4 | 4 | ========================================
|
5 | 5 |
|
6 |
| -Demonstration of using colorbar, picker, and event functionality to make an |
7 |
| -interactively adjustable colorbar widget. |
8 |
| -
|
9 |
| -Left clicks and drags inside the colorbar axes adjust the high range of the |
10 |
| -color scheme. Likewise, right clicks and drags adjust the low range. The |
11 |
| -connected AxesImage immediately updates to reflect the change. |
| 6 | +Demonstration of how a colorbar can be used to interactively adjust the |
| 7 | +range of colormapping on an image. To use the interactive feature, you must |
| 8 | +be in either zoom mode (magnifying glass toolbar button) or |
| 9 | +pan mode (4-way arrow toolbar button) and click inside the colorbar. |
| 10 | +
|
| 11 | +When zooming, the bbox of the zoom region defines the new vmin and vmax of |
| 12 | +the norm. Zooming using the right mouse button will expand the |
| 13 | +vmin and vmax proportionally to the selected region, in the same manner that |
| 14 | +one can zoom out of an axis. When panning, the vmin and vmax of the norm are |
| 15 | +both adjusted according to the direction of movement. The |
| 16 | +Home/Back/Forward buttons can also be used to get back to a previous state. |
| 17 | +
|
| 18 | +The data in the left and right images contain values that are |
| 19 | +out of the range of the Normalize object. The zoom and pan functionality |
| 20 | +on the colorbar can be used to adjust the range of the underlying norm |
| 21 | +and more clearly see what is in each of the left and right images. |
12 | 22 |
|
13 | 23 | .. redirect-from:: /gallery/userdemo/colormap_interactive_adjustment
|
14 | 24 | """
|
15 |
| - |
16 |
| -import numpy as np |
17 | 25 | import matplotlib.pyplot as plt
|
18 |
| -from matplotlib.backend_bases import MouseButton |
19 |
| - |
20 |
| -############################################################################### |
21 |
| -# Callback definitions |
22 |
| - |
23 |
| - |
24 |
| -def on_pick(event): |
25 |
| - adjust_colorbar(event.mouseevent) |
26 |
| - |
27 |
| - |
28 |
| -def on_move(mouseevent): |
29 |
| - if mouseevent.inaxes is colorbar.ax: |
30 |
| - adjust_colorbar(mouseevent) |
31 |
| - |
32 |
| - |
33 |
| -def adjust_colorbar(mouseevent): |
34 |
| - if mouseevent.button == MouseButton.LEFT: |
35 |
| - colorbar.norm.vmax = max(mouseevent.ydata, colorbar.norm.vmin) |
36 |
| - elif mouseevent.button == MouseButton.RIGHT: |
37 |
| - colorbar.norm.vmin = min(mouseevent.ydata, colorbar.norm.vmax) |
38 |
| - else: |
39 |
| - # discard all others |
40 |
| - return |
41 |
| - |
42 |
| - canvas.draw_idle() |
43 |
| - |
44 |
| - |
45 |
| -############################################################################### |
46 |
| -# Generate figure with Axesimage and Colorbar |
47 |
| - |
48 |
| -fig, ax = plt.subplots() |
49 |
| -canvas = fig.canvas |
50 |
| - |
51 |
| -delta = 0.1 |
52 |
| -x = np.arange(-3.0, 4.001, delta) |
53 |
| -y = np.arange(-4.0, 3.001, delta) |
54 |
| -X, Y = np.meshgrid(x, y) |
55 |
| -Z1 = np.exp(-X**2 - Y**2) |
56 |
| -Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2) |
57 |
| -Z = (0.9*Z1 - 0.5*Z2) * 2 |
58 |
| - |
59 |
| -cmap = plt.colormaps['viridis'].with_extremes( |
60 |
| - over='xkcd:orange', under='xkcd:dark red') |
61 |
| -axesimage = plt.imshow(Z, cmap=cmap) |
62 |
| -colorbar = plt.colorbar(axesimage, ax=ax, use_gridspec=True) |
63 |
| - |
64 |
| -############################################################################### |
65 |
| -# Note that axesimage and colorbar share a Normalize object |
66 |
| -# so they will stay in sync |
67 |
| - |
68 |
| -assert colorbar.norm is axesimage.norm |
69 |
| -colorbar.norm.vmax = 1.5 |
70 |
| -axesimage.norm.vmin = -0.75 |
71 |
| - |
72 |
| -############################################################################### |
73 |
| -# Hook Colorbar up to canvas events |
74 |
| - |
75 |
| -# `set_navigate` helps you see what value you are about to set the range |
76 |
| -# to, and enables zoom and pan in the colorbar which can be helpful for |
77 |
| -# narrow or wide data ranges |
78 |
| -colorbar.ax.set_navigate(True) |
79 |
| - |
80 |
| -# React to all motion with left or right mouse buttons held |
81 |
| -canvas.mpl_connect("motion_notify_event", on_move) |
82 |
| - |
83 |
| -# React only to left and right clicks |
84 |
| -colorbar.ax.set_picker(True) |
85 |
| -canvas.mpl_connect("pick_event", on_pick) |
| 26 | +from matplotlib.colors import Normalize |
| 27 | +import numpy as np |
86 | 28 |
|
87 |
| -############################################################################### |
88 |
| -# Display |
89 |
| -# |
90 |
| -# The colormap will now respond to left and right clicks in the Colorbar axes |
| 29 | +start = 0 |
| 30 | +stop = 2 * np.pi |
| 31 | +N = 1024 |
| 32 | +t = np.linspace(start, stop, N) |
| 33 | +data2d = np.sin(t)[:, np.newaxis] * np.cos(t)[np.newaxis, :] |
| 34 | + |
| 35 | +fig, axarr = plt.subplots(ncols=3) |
| 36 | + |
| 37 | +# Create a norm that is shared by all of the axes |
| 38 | +norm = Normalize(vmin=-1, vmax=1) |
| 39 | + |
| 40 | +for ax, name, offset in zip(axarr, |
| 41 | + ['(-2, 0)', '(-1, 1)', '(0, 2)'], |
| 42 | + [-1, 0, 1]): |
| 43 | + im = ax.imshow( |
| 44 | + data2d + offset, |
| 45 | + extent=[start - (stop - start) / (2 * N), |
| 46 | + stop + (stop - start) / (2 * N)] * 2, |
| 47 | + norm=norm, |
| 48 | + ) |
| 49 | + ax.set_title(f'Data range: {name}') |
| 50 | + |
| 51 | +fig.colorbar(im, ax=axarr, orientation='horizontal', |
| 52 | + label='Interactive colorbar that links to all axes') |
91 | 53 |
|
92 | 54 | plt.show()
|
0 commit comments