Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Commit bff0f32

Browse files
authored
Merge pull request #24934 from ksunden/rm_ipy_directive
Swap ipython directives for code-block directives
2 parents 038e805 + 8767419 commit bff0f32

File tree

1 file changed

+10
-15
lines changed

1 file changed

+10
-15
lines changed

tutorials/colors/colormapnorms.py

Lines changed: 10 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -20,14 +20,12 @@
2020
Artists that map data to color pass the arguments *vmin* and *vmax* to
2121
construct a :func:`matplotlib.colors.Normalize` instance, then call it:
2222
23-
.. ipython::
23+
.. code-block:: pycon
2424
25-
In [1]: import matplotlib as mpl
26-
27-
In [2]: norm = mpl.colors.Normalize(vmin=-1, vmax=1)
28-
29-
In [3]: norm(0)
30-
Out[3]: 0.5
25+
>>> import matplotlib as mpl
26+
>>> norm = mpl.colors.Normalize(vmin=-1, vmax=1)
27+
>>> norm(0)
28+
0.5
3129
3230
However, there are sometimes cases where it is useful to map data to
3331
colormaps in a non-linear fashion.
@@ -192,15 +190,12 @@
192190
# lower out-of-bounds values to the range over which the colors are
193191
# distributed. For instance:
194192
#
195-
# .. ipython::
196-
#
197-
# In [2]: import matplotlib.colors as colors
198-
#
199-
# In [3]: bounds = np.array([-0.25, -0.125, 0, 0.5, 1])
200-
#
201-
# In [4]: norm = colors.BoundaryNorm(boundaries=bounds, ncolors=4)
193+
# .. code-block:: pycon
202194
#
203-
# In [5]: print(norm([-0.2, -0.15, -0.02, 0.3, 0.8, 0.99]))
195+
# >>> import matplotlib.colors as colors
196+
# >>> bounds = np.array([-0.25, -0.125, 0, 0.5, 1])
197+
# >>> norm = colors.BoundaryNorm(boundaries=bounds, ncolors=4)
198+
# >>> print(norm([-0.2, -0.15, -0.02, 0.3, 0.8, 0.99]))
204199
# [0 0 1 2 3 3]
205200
#
206201
# Note: Unlike the other norms, this norm returns values from 0 to *ncolors*-1.

0 commit comments

Comments
 (0)