|
3 | 3 |
|
4 | 4 | import six
|
5 | 5 |
|
6 |
| -from nose.tools import assert_raises |
| 6 | +from nose.tools import assert_raises, assert_equal |
7 | 7 |
|
8 | 8 | import numpy as np
|
9 | 9 | from numpy.testing.utils import assert_array_equal, assert_array_almost_equal
|
@@ -62,11 +62,29 @@ def test_PowerNorm():
|
62 | 62 | assert_array_almost_equal(norm(a), pnorm(a))
|
63 | 63 |
|
64 | 64 | a = np.array([-0.5, 0, 2, 4, 8], dtype=np.float)
|
65 |
| - expected = [0, 0, 1./16, 1./4, 1] |
| 65 | + expected = [0, 0, 1/16, 1/4, 1] |
66 | 66 | pnorm = mcolors.PowerNorm(2, vmin=0, vmax=8)
|
67 | 67 | assert_array_almost_equal(pnorm(a), expected)
|
| 68 | + assert_equal(pnorm(a[0]), expected[0]) |
| 69 | + assert_equal(pnorm(a[2]), expected[2]) |
68 | 70 | assert_array_almost_equal(a[1:], pnorm.inverse(pnorm(a))[1:])
|
69 | 71 |
|
| 72 | + # Clip = True |
| 73 | + a = np.array([-0.5, 0, 1, 8, 16], dtype=np.float) |
| 74 | + expected = [0, 0, 0, 1, 1] |
| 75 | + pnorm = mcolors.PowerNorm(2, vmin=2, vmax=8, clip=True) |
| 76 | + assert_array_almost_equal(pnorm(a), expected) |
| 77 | + assert_equal(pnorm(a[0]), expected[0]) |
| 78 | + assert_equal(pnorm(a[-1]), expected[-1]) |
| 79 | + |
| 80 | + # Clip = True at call time |
| 81 | + a = np.array([-0.5, 0, 1, 8, 16], dtype=np.float) |
| 82 | + expected = [0, 0, 0, 1, 1] |
| 83 | + pnorm = mcolors.PowerNorm(2, vmin=2, vmax=8, clip=False) |
| 84 | + assert_array_almost_equal(pnorm(a, clip=True), expected) |
| 85 | + assert_equal(pnorm(a[0], clip=True), expected[0]) |
| 86 | + assert_equal(pnorm(a[-1], clip=True), expected[-1]) |
| 87 | + |
70 | 88 |
|
71 | 89 | def test_Normalize():
|
72 | 90 | norm = mcolors.Normalize()
|
|
0 commit comments