@@ -6147,13 +6147,6 @@ def _normalize_input(inp, ename='input'):
61476147 if bins is None :
61486148 bins = rcParams ['hist.bins' ]
61496149
6150- # xrange becomes range after 2to3
6151- bin_range = range
6152- range = __builtins__ ["range" ]
6153-
6154- # NOTE: the range keyword overwrites the built-in func range !!!
6155- # needs to be fixed in numpy !!!
6156-
61576150 # Validate string inputs here so we don't have to clutter
61586151 # subsequent code.
61596152 if histtype not in ['bar' , 'barstacked' , 'step' , 'stepfilled' ]:
@@ -6172,11 +6165,11 @@ def _normalize_input(inp, ename='input'):
61726165 # process the unit information
61736166 self ._process_unit_info (xdata = x , kwargs = kwargs )
61746167 x = self .convert_xunits (x )
6175- if bin_range is not None :
6176- bin_range = self .convert_xunits (bin_range )
6168+ if range is not None :
6169+ range = self .convert_xunits (range )
61776170
61786171 # Check whether bins or range are given explicitly.
6179- binsgiven = (cbook .iterable (bins ) or bin_range is not None )
6172+ binsgiven = (cbook .iterable (bins ) or range is not None )
61806173
61816174 # basic input validation
61826175 flat = np .ravel (x )
@@ -6205,7 +6198,8 @@ def _normalize_input(inp, ename='input'):
62056198 'weights should have the same shape as x' )
62066199
62076200 if color is None :
6208- color = [self ._get_lines .get_next_color () for i in xrange (nx )]
6201+ color = [
6202+ self ._get_lines .get_next_color () for i in xrange (nx )]
62096203 else :
62106204 color = mcolors .to_rgba_array (color )
62116205 if len (color ) != nx :
@@ -6224,12 +6218,12 @@ def _normalize_input(inp, ename='input'):
62246218 if len (xi ) > 0 :
62256219 xmin = min (xmin , xi .min ())
62266220 xmax = max (xmax , xi .max ())
6227- bin_range = (xmin , xmax )
6221+ range = (xmin , xmax )
62286222
62296223 # hist_kwargs = dict(range=range, normed=bool(normed))
62306224 # We will handle the normed kwarg within mpl until we
62316225 # get to the point of requiring numpy >= 1.5.
6232- hist_kwargs = dict (range = bin_range )
6226+ hist_kwargs = dict (range = range )
62336227
62346228 n = []
62356229 mlast = None
@@ -6514,10 +6508,7 @@ def hist2d(self, x, y, bins=10, range=None, normed=False, weights=None,
65146508 .. plot:: mpl_examples/statistics/plot_hist.py
65156509 """
65166510
6517- # xrange becomes range after 2to3
6518- bin_range = range
6519- range = __builtins__ ["range" ]
6520- h , xedges , yedges = np .histogram2d (x , y , bins = bins , range = bin_range ,
6511+ h , xedges , yedges = np .histogram2d (x , y , bins = bins , range = range ,
65216512 normed = normed , weights = weights )
65226513
65236514 if cmin is not None :
0 commit comments