Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Commit e6f1b38

Browse files
khchansolvents
authored andcommitted
Fixed bug for regression test #1181 in scipy unit tests; ksdensity is now referred to as gaussian_kde and exists as a class in mlab.
Fixed list comp position bug and updated examples
1 parent 3c4c619 commit e6f1b38

File tree

3 files changed

+149
-122
lines changed

3 files changed

+149
-122
lines changed

examples/statistics/violinplot_demo.py

Lines changed: 13 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@
88

99
# fake data
1010
fs = 10 # fontsize
11-
pos = range(5)
11+
pos = [1,2,4,5,7,8]
1212
data = [np.random.normal(size=100) for i in pos]
1313

1414
# TODO: future customizability dicts go here
@@ -25,22 +25,28 @@
2525

2626
fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(6,6))
2727

28-
axes[0, 0].violinplot(data, pos, width=0.1)
28+
axes[0, 0].violinplot(data, pos, points=20, widths=0.1, showmeans=True,
29+
showextrema=True, showmedians=True)
2930
axes[0, 0].set_title('Custom violinplot 1', fontsize=fs)
3031

31-
axes[0, 1].violinplot(data, pos, width=0.3)
32+
axes[0, 1].violinplot(data, pos, points=40, widths=0.3, showmeans=True,
33+
showextrema=True, showmedians=True)
3234
axes[0, 1].set_title('Custom violinplot 2', fontsize=fs)
3335

34-
axes[0, 2].violinplot(data, pos, width=0.5)
36+
axes[0, 2].violinplot(data, pos, points=60, widths=0.5, showmeans=True,
37+
showextrema=True, showmedians=True)
3538
axes[0, 2].set_title('Custom violinplot 3', fontsize=fs)
3639

37-
axes[1, 0].violinplot(data, pos, width=0.7)
40+
axes[1, 0].violinplot(data, pos, points=80, vert=False, widths=0.7,
41+
showmeans=True, showextrema=True, showmedians=True)
3842
axes[1, 0].set_title('Custom violinplot 4', fontsize=fs)
3943

40-
axes[1, 1].violinplot(data, pos, width=0.9)
44+
axes[1, 1].violinplot(data, pos, points=100, vert=False, widths=0.9,
45+
showmeans=True, showextrema=True, showmedians=True)
4146
axes[1, 1].set_title('Custom violinplot 5', fontsize=fs)
4247

43-
axes[1, 2].violinplot(data, pos, width=1.1)
48+
axes[1, 2].violinplot(data, pos, points=200, vert=False, widths=1.1,
49+
showmeans=True, showextrema=True, showmedians=True)
4450
axes[1, 2].set_title('Custom violinplot 6', fontsize=fs)
4551

4652
for ax in axes.flatten():

lib/matplotlib/axes/_axes.py

Lines changed: 19 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -6725,7 +6725,7 @@ def matshow(self, Z, **kwargs):
67256725
integer=True))
67266726
return im
67276727

6728-
def violinplot(self, dataset, positions=None, vert=True, widths=0.5, showmeans=False,
6728+
def violinplot(self, dataset, positions=None, points=100, vert=True, widths=0.5, showmeans=False,
67296729
showextrema=True, showmedians=False):
67306730
"""
67316731
Make a violin plot.
@@ -6748,6 +6748,9 @@ def violinplot(self, dataset, positions=None, vert=True, widths=0.5, showmeans=F
67486748
positions : array-like, default = [1, 2, ..., n]
67496749
Sets the positions of the violins. The ticks and limits are
67506750
automatically set to match the positions.
6751+
6752+
points: array-like, default = 100
6753+
Number of points to evaluate pdf estimation for Gaussian kernel
67516754
67526755
vert : bool, default = True.
67536756
If true, creates vertical violin plot
@@ -6806,6 +6809,9 @@ def violinplot(self, dataset, positions=None, vert=True, widths=0.5, showmeans=F
68066809
cbars = None
68076810
cmedians = None
68086811

6812+
datashape_message = ("List of violinplot statistics and `{0}` "
6813+
"values must have same the length")
6814+
68096815
# Validate positions
68106816
if positions == None:
68116817
positions = range(1, len(dataset) + 1)
@@ -6830,13 +6836,14 @@ def violinplot(self, dataset, positions=None, vert=True, widths=0.5, showmeans=F
68306836
# Render violins
68316837
for d,p,w in zip(dataset,positions,widths):
68326838
# Calculate the kernel density
6833-
kde = mlab.ksdensity(d)
6834-
m = kde['xmin']
6835-
M = kde['xmax']
6836-
mean = kde['mean']
6837-
median = kde['median']
6838-
v = kde['result']
6839-
coords = np.arange(m,M,(M-m)/100.)
6839+
kde = mlab.gaussian_kde(d)
6840+
m = kde.dataset.min()
6841+
M = kde.dataset.max()
6842+
mean = np.mean(kde.dataset)
6843+
median = np.median(kde.dataset)
6844+
coords = np.arange(m,M,(M-m)/float(points))
6845+
6846+
v = kde.evaluate(coords)
68406847

68416848
# Since each data point p is plotted from v-p to v+p,
68426849
# we need to scale it by an additional 0.5 factor so that we get
@@ -6846,10 +6853,10 @@ def violinplot(self, dataset, positions=None, vert=True, widths=0.5, showmeans=F
68466853
# create vertical violin plot
68476854
if vert:
68486855
bodies += [self.fill_betweenx(coords,
6849-
-v+p,
6850-
v+p,
6851-
facecolor='y',
6852-
alpha=0.3)]
6856+
-v+p,
6857+
v+p,
6858+
facecolor='y',
6859+
alpha=0.3)]
68536860
# create horizontal violin plot
68546861
else:
68556862
bodies += [self.fill_between(coords,
@@ -6895,10 +6902,6 @@ def violinplot(self, dataset, positions=None, vert=True, widths=0.5, showmeans=F
68956902
if showmedians:
68966903
cmedians = self.vlines(medians, pmins, pmaxes, colors='r')
68976904

6898-
6899-
6900-
6901-
69026905
# Reset hold
69036906
self.hold(holdStatus)
69046907

lib/matplotlib/mlab.py

Lines changed: 117 additions & 99 deletions
Original file line numberDiff line numberDiff line change
@@ -3656,12 +3656,12 @@ def stineman_interp(xi,x,y,yp=None):
36563656
1/(dy1+dy2),))
36573657
return yi
36583658

3659-
def ksdensity(dataset, bw_method=None):
3659+
class gaussian_kde(object):
36603660
"""
36613661
Representation of a kernel-density estimate using Gaussian kernels.
36623662
36633663
Call signature::
3664-
kde_dict = ksdensity(dataset, 'silverman')
3664+
kde = gaussian_kde(dataset, 'silverman')
36653665
36663666
Parameters
36673667
----------
@@ -3676,10 +3676,10 @@ def ksdensity(dataset, bw_method=None):
36763676
Attributes
36773677
----------
36783678
dataset : ndarray
3679-
The dataset with which `ksdensity` was initialized.
3680-
d : int
3679+
The dataset with which `gaussian_kde` was initialized.
3680+
dim : int
36813681
Number of dimensions.
3682-
n : int
3682+
num_dp : int
36833683
Number of datapoints.
36843684
factor : float
36853685
The bandwidth factor, obtained from `kde.covariance_factor`, with which
@@ -3690,117 +3690,135 @@ def ksdensity(dataset, bw_method=None):
36903690
inv_cov : ndarray
36913691
The inverse of `covariance`.
36923692
3693-
Returns
3693+
Methods
36943694
-------
3695-
A dictionary mapping each various aspects of the computed KDE.
3696-
The dictionary has the following keys:
3697-
3698-
xmin : number
3699-
The min of the input dataset
3700-
xmax : number
3701-
The max of the input dataset
3702-
mean : number
3703-
The mean of the result
3704-
median: number
3705-
The median of the result
3706-
result: (# of points,)-array
3707-
The array of the evaluated PDF estimation
3708-
3709-
Raises
3710-
------
3711-
ValueError : if the dimensionality of the input points is different than
3712-
the dimensionality of the KDE.
3695+
kde.evaluate(points) : ndarray
3696+
Evaluate the estimated pdf on a provided set of points.
3697+
kde(points) : ndarray
3698+
Same as kde.evaluate(points)
3699+
kde.set_bandwidth(bw_method='scott') : None
3700+
Computes the bandwidth, i.e. the coefficient that multiplies the data
3701+
covariance matrix to obtain the kernel covariance matrix.
3702+
.. versionadded:: 0.11.0
3703+
kde.covariance_factor : float
3704+
Computes the coefficient (`kde.factor`) that multiplies the data
3705+
covariance matrix to obtain the kernel covariance matrix.
3706+
The default is `scotts_factor`. A subclass can overwrite this method
3707+
to provide a different method, or set it through a call to
3708+
`kde.set_bandwidth`.
37133709
37143710
"""
37153711

37163712
# This implementation with minor modification was too good to pass up.
37173713
# from scipy: https://github.com/scipy/scipy/blob/master/scipy/stats/kde.py
37183714

3719-
dataset = np.array(np.atleast_2d(dataset))
3720-
xmin = dataset.min()
3721-
xmax = dataset.max()
3715+
def __init__(self, dataset, bw_method=None):
3716+
self.dataset = np.atleast_2d(dataset)
3717+
if not self.dataset.size > 1:
3718+
raise ValueError("`dataset` input should have multiple elements.")
37223719

3723-
if not dataset.size > 1:
3724-
raise ValueError("`dataset` input should have multiple elements.")
3720+
self.dim, self.num_dp = self.dataset.shape
3721+
self.set_bandwidth(bw_method=bw_method)
37253722

3726-
dim, num_dp = dataset.shape
3723+
def scotts_factor(self):
3724+
return np.power(self.num_dp, -1./(self.dim+4))
37273725

3728-
# ----------------------------------------------
3729-
# Set Bandwidth, defaulted to Scott's Factor
3730-
# ----------------------------------------------
3731-
scotts_factor = lambda: np.power(num_dp, -1./(dim+4))
3732-
silverman_factor = lambda: np.power(num_dp*(dim+2.0)/4.0, -1./(dim+4))
3726+
def silverman_factor(self):
3727+
return np.power(self.num_dp*(self.dim+2.0)/4.0, -1./(self.dim+4))
37333728

3734-
# Default method to calculate bandwidth, can be overwritten by subclass
3729+
# Default method to calculate bandwidth, can be overwritten by subclass
37353730
covariance_factor = scotts_factor
37363731

3737-
if bw_method is None:
3738-
pass
3739-
elif bw_method == 'scott':
3740-
covariance_factor = scotts_factor
3741-
elif bw_method == 'silverman':
3742-
covariance_factor = silverman_factor
3743-
elif np.isscalar(bw_method) and not isinstance(bw_method, six.string_types):
3744-
covariance_factor = lambda: bw_method
3745-
else:
3746-
msg = "`bw_method` should be 'scott', 'silverman', or a scalar"
3747-
raise ValueError(msg)
3748-
3749-
# ---------------------------------------------------------------
3750-
# Computes covariance matrix for each Gaussian kernel with factor
3751-
# ---------------------------------------------------------------
3752-
factor = covariance_factor()
3753-
3754-
# Cache covariance and inverse covariance of the data
3755-
data_covariance = np.atleast_2d(np.cov(dataset, rowvar=1, bias=False))
3756-
data_inv_cov = np.linalg.inv(data_covariance)
3757-
3758-
covariance = data_covariance * factor**2
3759-
inv_cov = data_inv_cov / factor**2
3760-
norm_factor = np.sqrt(np.linalg.det(2*np.pi*covariance)) * num_dp
3761-
3762-
# ----------------------------------------------
3763-
# Evaluate the estimated pdf on a set of points.
3764-
# ----------------------------------------------
3765-
points = np.atleast_2d(np.arange(xmin, xmax, (xmax-xmin)/100.))
3766-
3767-
dim_pts, num_dp_pts = np.array(points).shape
3768-
if dim_pts != dim:
3769-
if dim_pts == 1 and num_dp_pts == num_dp:
3770-
# points was passed in as a row vector
3771-
points = np.reshape(points, (dim, 1))
3772-
num_dp_pts = 1
3732+
def set_bandwidth(self, bw_method=None):
3733+
if bw_method is None:
3734+
pass
3735+
elif bw_method == 'scott':
3736+
self.covariance_factor = self.scotts_factor
3737+
elif bw_method == 'silverman':
3738+
self.covariance_factor = self.silverman_factor
3739+
elif np.isscalar(bw_method) and not isinstance(bw_method, six.string_types):
3740+
self._bw_method = 'use constant'
3741+
self.covariance_factor = lambda: bw_method
3742+
elif callable(bw_method):
3743+
self._bw_method = bw_method
3744+
self.covariance_factor = lambda: self._bw_method(self)
37733745
else:
3774-
msg = "points have dimension %s,\
3775-
dataset has dimension %s" % (dim_pts, dim)
3746+
msg = "`bw_method` should be 'scott', 'silverman', a scalar " \
3747+
"or a callable."
37763748
raise ValueError(msg)
37773749

3778-
result = np.zeros((num_dp_pts,), dtype=np.float)
3750+
self._compute_covariance()
37793751

3780-
if num_dp_pts >= num_dp:
3781-
# there are more points than data, so loop over data
3782-
for i in range(num_dp):
3783-
diff = dataset[:, i, np.newaxis] - points
3784-
tdiff = np.dot(inv_cov, diff)
3785-
energy = np.sum(diff*tdiff, axis=0) / 2.0
3786-
result = result + np.exp(-energy)
3787-
else:
3788-
# loop over points
3789-
for i in range(num_dp_pts):
3790-
diff = dataset - points[:, i, np.newaxis]
3791-
tdiff = np.dot(inv_cov, diff)
3792-
energy = np.sum(diff * tdiff, axis=0) / 2.0
3793-
result[i] = np.sum(np.exp(-energy), axis=0)
3794-
3795-
result = result / norm_factor
3796-
3797-
return {
3798-
'xmin': xmin,
3799-
'xmax': xmax,
3800-
'mean': np.mean(dataset),
3801-
'median': np.median(dataset),
3802-
'result': result
3803-
}
3752+
def _compute_covariance(self):
3753+
"""Computes the covariance matrix for each Gaussian kernel using
3754+
covariance_factor().
3755+
"""
3756+
self.factor = self.covariance_factor()
3757+
# Cache covariance and inverse covariance of the data
3758+
if not hasattr(self, '_data_inv_cov'):
3759+
self._data_covariance = np.atleast_2d(np.cov(self.dataset, rowvar=1,
3760+
bias=False))
3761+
self._data_inv_cov = np.linalg.inv(self._data_covariance)
3762+
3763+
self.covariance = self._data_covariance * self.factor**2
3764+
self.inv_cov = self._data_inv_cov / self.factor**2
3765+
self._norm_factor = np.sqrt(np.linalg.det(2*np.pi*self.covariance)) * self.num_dp
3766+
3767+
def evaluate(self, points):
3768+
"""Evaluate the estimated pdf on a set of points.
3769+
3770+
Parameters
3771+
----------
3772+
points : (# of dimensions, # of points)-array
3773+
Alternatively, a (# of dimensions,) vector can be passed in and
3774+
treated as a single point.
3775+
3776+
Returns
3777+
-------
3778+
values : (# of points,)-array
3779+
The values at each point.
3780+
3781+
Raises
3782+
------
3783+
ValueError : if the dimensionality of the input points is different than
3784+
the dimensionality of the KDE.
3785+
3786+
"""
3787+
points = np.atleast_2d(points)
3788+
3789+
d, m = points.shape
3790+
if d != self.dim:
3791+
if d == 1 and m == self.dim:
3792+
# points was passed in as a row vector
3793+
points = np.reshape(points, (self.dim, 1))
3794+
m = 1
3795+
else:
3796+
msg = "points have dimension %s, dataset has dimension %s" % (d,
3797+
self.dim)
3798+
raise ValueError(msg)
3799+
3800+
result = np.zeros((m,), dtype=np.float)
3801+
3802+
if m >= self.num_dp:
3803+
# there are more points than data, so loop over data
3804+
for i in range(self.num_dp):
3805+
diff = self.dataset[:, i, np.newaxis] - points
3806+
tdiff = np.dot(self.inv_cov, diff)
3807+
energy = np.sum(diff*tdiff,axis=0) / 2.0
3808+
result = result + np.exp(-energy)
3809+
else:
3810+
# loop over points
3811+
for i in range(m):
3812+
diff = self.dataset - points[:, i, np.newaxis]
3813+
tdiff = np.dot(self.inv_cov, diff)
3814+
energy = np.sum(diff * tdiff, axis=0) / 2.0
3815+
result[i] = np.sum(np.exp(-energy), axis=0)
3816+
3817+
result = result / self._norm_factor
3818+
3819+
return result
3820+
3821+
__call__ = evaluate
38043822

38053823
##################################################
38063824
# Code related to things in and around polygons

0 commit comments

Comments
 (0)