Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Commit ed3b538

Browse files
authored
Merge pull request #20959 from meeseeksmachine/auto-backport-of-pr-20952-on-v3.5.x
Backport PR #20952 on branch v3.5.x (Redirect to new 3rd party packages page)
2 parents 0de9c18 + 90cf533 commit ed3b538

File tree

1 file changed

+2
-366
lines changed

1 file changed

+2
-366
lines changed

doc/thirdpartypackages/index.rst

Lines changed: 2 additions & 366 deletions
Original file line numberDiff line numberDiff line change
@@ -1,369 +1,5 @@
11
:orphan:
22

3-
.. note::
3+
.. raw:: html
44

5-
This page has been moved to <https://matplotlib.org/mpl-third-party/>,
6-
where you will find an up-to-date list of packages.
7-
8-
9-
********************
10-
Third party packages
11-
********************
12-
13-
Several external packages that extend or build on Matplotlib functionality are
14-
listed below. You can find more packages at `PyPI <https://pypi.org/search/?q=&o=&c=Framework+%3A%3A+Matplotlib>`_.
15-
They are maintained and distributed separately from Matplotlib,
16-
and thus need to be installed individually.
17-
18-
If you have a created a package that extends or builds on Matplotlib
19-
and would like to have your package listed on this page, please submit
20-
an issue or pull request on GitHub. The pull request should include a short
21-
description of the library and an image demonstrating the functionality.
22-
To be included in the PyPI listing, please include ``Framework :: Matplotlib``
23-
in the classifier list in the ``setup.py`` file for your package. We are also
24-
happy to host third party packages within the `Matplotlib GitHub Organization
25-
<https://github.com/matplotlib>`_.
26-
27-
28-
Mapping toolkits
29-
****************
30-
31-
Basemap
32-
=======
33-
`Basemap <https://matplotlib.org/basemap/>`_ plots data on map projections,
34-
with continental and political boundaries.
35-
36-
.. image:: /_static/basemap_contour1.png
37-
:height: 400px
38-
39-
Cartopy
40-
=======
41-
`Cartopy <https://scitools.org.uk/cartopy/docs/latest/>`_ builds on top
42-
of Matplotlib to provide object oriented map projection definitions
43-
and close integration with Shapely for powerful yet easy-to-use vector
44-
data processing tools. An example plot from the `Cartopy gallery
45-
<https://scitools.org.uk/cartopy/docs/latest/gallery/index.html>`_:
46-
47-
.. image:: /_static/cartopy_hurricane_katrina_01_00.png
48-
:height: 400px
49-
50-
Geoplot
51-
=======
52-
`Geoplot <https://residentmario.github.io/geoplot/index.html>`_ builds on top
53-
of Matplotlib and Cartopy to provide a "standard library" of simple, powerful,
54-
and customizable plot types. An example plot from the `Geoplot gallery
55-
<https://residentmario.github.io/geoplot/index.html>`_:
56-
57-
.. image:: /_static/geoplot_nyc_traffic_tickets.png
58-
:height: 400px
59-
60-
Ridge Map
61-
=========
62-
`ridge_map <https://github.com/ColCarroll/ridge_map>`_ uses Matplotlib,
63-
SRTM.py, NumPy, and scikit-image to make ridge plots of your favorite
64-
ridges.
65-
66-
.. image:: /_static/ridge_map_white_mountains.png
67-
:height: 364px
68-
69-
Declarative libraries
70-
*********************
71-
72-
ggplot
73-
======
74-
`ggplot <https://github.com/yhat/ggplot>`_ is a port of the R ggplot2 package
75-
to python based on Matplotlib.
76-
77-
.. image:: /_static/ggplot.png
78-
:height: 195px
79-
80-
holoviews
81-
=========
82-
`holoviews <http://holoviews.org>`_ makes it easier to visualize data
83-
interactively, especially in a `Jupyter notebook <https://jupyter.org>`_, by
84-
providing a set of declarative plotting objects that store your data and
85-
associated metadata. Your data is then immediately visualizable alongside or
86-
overlaid with other data, either statically or with automatically provided
87-
widgets for parameter exploration.
88-
89-
.. image:: /_static/holoviews.png
90-
:height: 354px
91-
92-
plotnine
93-
========
94-
95-
`plotnine <https://plotnine.readthedocs.io/en/stable/>`_ implements a grammar
96-
of graphics, similar to R's `ggplot2 <https://ggplot2.tidyverse.org/>`_.
97-
The grammar allows users to compose plots by explicitly mapping data to the
98-
visual objects that make up the plot.
99-
100-
.. image:: /_static/plotnine.png
101-
102-
Specialty plots
103-
***************
104-
105-
Broken Axes
106-
===========
107-
`brokenaxes <https://github.com/bendichter/brokenaxes>`_ supplies an axes
108-
class that can have a visual break to indicate a discontinuous range.
109-
110-
.. image:: /_static/brokenaxes.png
111-
112-
DeCiDa
113-
======
114-
115-
`DeCiDa <https://pypi.org/project/DeCiDa/>`_ is a library of functions
116-
and classes for electron device characterization, electronic circuit design and
117-
general data visualization and analysis.
118-
119-
matplotlib-scalebar
120-
===================
121-
122-
`matplotlib-scalebar <https://github.com/ppinard/matplotlib-scalebar>`_ provides a new artist to display a scale bar, aka micron bar.
123-
It is particularly useful when displaying calibrated images plotted using ``plt.imshow(...)``.
124-
125-
.. image:: /_static/gold_on_carbon.jpg
126-
127-
Matplotlib-Venn
128-
===============
129-
`Matplotlib-Venn <https://github.com/konstantint/matplotlib-venn>`_ provides a
130-
set of functions for plotting 2- and 3-set area-weighted (or unweighted) Venn
131-
diagrams.
132-
133-
mpl-probscale
134-
=============
135-
`mpl-probscale <https://matplotlib.org/mpl-probscale/>`_ is a small extension
136-
that allows Matplotlib users to specify probability scales. Simply importing the
137-
``probscale`` module registers the scale with Matplotlib, making it accessible
138-
via e.g., ``ax.set_xscale('prob')`` or ``plt.yscale('prob')``.
139-
140-
.. image:: /_static/probscale_demo.png
141-
142-
mpl-scatter-density
143-
===================
144-
145-
`mpl-scatter-density <https://github.com/astrofrog/mpl-scatter-density>`_ is a
146-
small package that makes it easy to make scatter plots of large numbers
147-
of points using a density map. The following example contains around 13 million
148-
points and the plotting (excluding reading in the data) took less than a
149-
second on an average laptop:
150-
151-
.. image:: /_static/mpl-scatter-density.png
152-
:height: 400px
153-
154-
When used in interactive mode, the density map is downsampled on-the-fly while
155-
panning/zooming in order to provide a smooth interactive experience.
156-
157-
mplstereonet
158-
============
159-
`mplstereonet <https://github.com/joferkington/mplstereonet>`_ provides
160-
stereonets for plotting and analyzing orientation data in Matplotlib.
161-
162-
Natgrid
163-
=======
164-
`mpl_toolkits.natgrid <https://github.com/matplotlib/natgrid>`_ is an interface
165-
to the natgrid C library for gridding irregularly spaced data.
166-
167-
pyUpSet
168-
=======
169-
`pyUpSet <https://github.com/ImSoErgodic/py-upset>`_ is a
170-
static Python implementation of the `UpSet suite by Lex et al.
171-
<http://caleydo.org/tools/upset/>`_ to explore complex intersections of
172-
sets and data frames.
173-
174-
seaborn
175-
=======
176-
`seaborn <http://seaborn.pydata.org/>`_ is a high level interface for drawing
177-
statistical graphics with Matplotlib. It aims to make visualization a central
178-
part of exploring and understanding complex datasets.
179-
180-
.. image:: /_static/seaborn.png
181-
:height: 157px
182-
183-
WCSAxes
184-
=======
185-
186-
The `Astropy <https://www.astropy.org/>`_ core package includes a submodule
187-
called WCSAxes (available at `astropy.visualization.wcsaxes
188-
<http://docs.astropy.org/en/stable/visualization/wcsaxes/index.html>`_) which
189-
adds Matplotlib projections for Astronomical image data. The following is an
190-
example of a plot made with WCSAxes which includes the original coordinate
191-
system of the image and an overlay of a different coordinate system:
192-
193-
.. image:: /_static/wcsaxes.jpg
194-
:height: 400px
195-
196-
Windrose
197-
========
198-
`Windrose <https://github.com/scls19fr/windrose>`_ is a Python Matplotlib,
199-
Numpy library to manage wind data, draw windroses (also known as polar rose
200-
plots), draw probability density functions and fit Weibull distributions.
201-
202-
Yellowbrick
203-
===========
204-
`Yellowbrick <https://www.scikit-yb.org/>`_ is a suite of visual diagnostic tools for machine learning that enables human steering of the model selection process. Yellowbrick combines scikit-learn with matplotlib using an estimator-based API called the ``Visualizer``, which wraps both sklearn models and matplotlib Axes. ``Visualizer`` objects fit neatly into the machine learning workflow allowing data scientists to integrate visual diagnostic and model interpretation tools into experimentation without extra steps.
205-
206-
.. image:: /_static/yellowbrick.png
207-
:height: 400px
208-
209-
Animations
210-
**********
211-
212-
animatplot
213-
==========
214-
`animatplot <https://animatplot.readthedocs.io/>`_ is a library for
215-
producing interactive animated plots with the goal of making production of
216-
animated plots almost as easy as static ones.
217-
218-
.. image:: /_static/animatplot.png
219-
220-
For an animated version of the above picture and more examples, see the
221-
`animatplot gallery. <https://animatplot.readthedocs.io/en/stable/gallery.html>`_
222-
223-
gif
224-
===
225-
`gif <https://github.com/maxhumber/gif/>`_ is an ultra lightweight animated gif API.
226-
227-
.. image:: /_static/gif_attachment_example.png
228-
229-
numpngw
230-
=======
231-
232-
`numpngw <https://pypi.org/project/numpngw/>`_ provides functions for writing
233-
NumPy arrays to PNG and animated PNG files. It also includes the class
234-
``AnimatedPNGWriter`` that can be used to save a Matplotlib animation as an
235-
animated PNG file. See the example on the PyPI page or at the ``numpngw``
236-
`github repository <https://github.com/WarrenWeckesser/numpngw>`_.
237-
238-
.. image:: /_static/numpngw_animated_example.png
239-
240-
Interactivity
241-
*************
242-
243-
mplcursors
244-
==========
245-
`mplcursors <https://mplcursors.readthedocs.io>`_ provides interactive data
246-
cursors for Matplotlib.
247-
248-
MplDataCursor
249-
=============
250-
`MplDataCursor <https://github.com/joferkington/mpldatacursor>`_ is a toolkit
251-
written by Joe Kington to provide interactive "data cursors" (clickable
252-
annotation boxes) for Matplotlib.
253-
254-
mpl_interactions
255-
================
256-
`mpl_interactions <https://mpl-interactions.readthedocs.io/en/latest/>`_
257-
makes it easy to create interactive plots controlled by sliders and other
258-
widgets. It also provides several handy capabilities such as manual
259-
image segmentation, comparing cross-sections of arrays, and using the
260-
scroll wheel to zoom.
261-
262-
.. image:: /_static/mpl-interactions-slider-animated.png
263-
264-
Rendering backends
265-
******************
266-
267-
mplcairo
268-
========
269-
`mplcairo <https://github.com/anntzer/mplcairo>`_ is a cairo backend for
270-
Matplotlib, with faster and more accurate marker drawing, support for a wider
271-
selection of font formats and complex text layout, and various other features.
272-
273-
gr
274-
==
275-
`gr <https://gr-framework.org/>`_ is a framework for cross-platform
276-
visualisation applications, which can be used as a high-performance Matplotlib
277-
backend.
278-
279-
GUI integration
280-
***************
281-
282-
wxmplot
283-
=======
284-
`WXMPlot <https://pypi.org/project/wxmplot/>`_ provides advanced wxPython
285-
widgets for plotting and image display of numerical data based on Matplotlib.
286-
287-
Miscellaneous
288-
*************
289-
290-
adjustText
291-
==========
292-
`adjustText <https://github.com/Phlya/adjustText>`_ is a small library for
293-
automatically adjusting text position in Matplotlib plots to minimize overlaps
294-
between them, specified points and other objects.
295-
296-
.. image:: /_static/adjustText.png
297-
298-
iTerm2 terminal backend
299-
=======================
300-
`matplotlib_iterm2 <https://github.com/oselivanov/matplotlib_iterm2>`_ is an
301-
external Matplotlib backend using the iTerm2 nightly build inline image display
302-
feature.
303-
304-
.. image:: /_static/matplotlib_iterm2_demo.png
305-
306-
mpl-template
307-
============
308-
`mpl-template <https://austinorr.github.io/mpl-template/index.html>`_ provides
309-
a customizable way to add engineering figure elements such as a title block,
310-
border, and logo.
311-
312-
.. image:: /_static/mpl_template_example.png
313-
:height: 330px
314-
315-
figpager
316-
========
317-
`figpager <https://pypi.org/project/figpager/>`_ provides customizable figure
318-
elements such as text, lines and images and subplot layout control for single
319-
or multi page output.
320-
321-
.. image:: /_static/figpager.png
322-
323-
blume
324-
=====
325-
326-
`blume <https://pypi.org/project/blume/>`_ provides a replacement for
327-
the Matplotlib ``table`` module. It fixes a number of issues with the
328-
existing table. See the `blume github repository
329-
<https://github.com/swfiua/blume>`_ for more details.
330-
331-
.. image:: /_static/blume_table_example.png
332-
333-
highlight-text
334-
==============
335-
336-
`highlight-text <https://pypi.org/project/highlight-text/>`_ is a small library
337-
that provides an easy way to effectively annotate plots by highlighting
338-
substrings with the font properties of your choice.
339-
See the `highlight-text github repository
340-
<https://github.com/znstrider/highlight_text>`_ for more details and examples.
341-
342-
.. image:: /_static/highlight_text_examples.png
343-
344-
DNA Features Viewer
345-
===================
346-
347-
`DNA Features Viewer <https://github.com/Edinburgh-Genome-Foundry/DnaFeaturesViewer>`_
348-
provides methods to plot annotated DNA sequence maps (possibly along other Matplotlib
349-
plots) for Bioinformatics and Synthetic Biology applications.
350-
351-
.. image:: /_static/dna_features_viewer_screenshot.png
352-
353-
GUI applications
354-
****************
355-
356-
sviewgui
357-
========
358-
359-
`sviewgui <https://pypi.org/project/sviewgui/>`_ is a PyQt-based GUI for
360-
visualisation of data from csv files or `pandas.DataFrame`\s. Main features:
361-
362-
- Scatter, line, density, histogram, and box plot types
363-
- Settings for the marker size, line width, number of bins of histogram,
364-
colormap (from cmocean)
365-
- Save figure as editable PDF
366-
- Code of the plotted graph is available so that it can be reused and modified
367-
outside of sviewgui
368-
369-
.. image:: /_static/sviewgui_sample.png
5+
<meta http-equiv="refresh" content="0; url=https://matplotlib.org/mpl-third-party/">

0 commit comments

Comments
 (0)