diff --git a/tutorials/introductory/images.py b/tutorials/introductory/images.py index f40b208dd225..cdb11f0655e4 100644 --- a/tutorials/introductory/images.py +++ b/tutorials/introductory/images.py @@ -49,7 +49,8 @@ """ import matplotlib.pyplot as plt -import matplotlib.image as mpimg +import numpy as np +from PIL import Image ############################################################################### # .. _importing_data: @@ -72,23 +73,14 @@ # `_ # to your computer for the rest of this tutorial. # -# And here we go... +# We use Pillow to open an image (with `PIL.Image.open`), and immediately +# convert the `PIL.Image.Image` object into an 8-bit (``dtype=uint8``) numpy +# array. -img = mpimg.imread('../../doc/_static/stinkbug.png') -print(img) +img = np.asarray(Image.open('../../doc/_static/stinkbug.png')) +print(repr(img)) ############################################################################### -# Note the dtype there - float32. Matplotlib has rescaled the 8 bit -# data from each channel to floating point data between 0.0 and 1.0. As -# a side note, the only datatype that Pillow can work with is uint8. -# Matplotlib plotting can handle float32 and uint8, but image -# reading/writing for any format other than PNG is limited to uint8 -# data. Why 8 bits? Most displays can only render 8 bits per channel -# worth of color gradation. Why can they only render 8 bits/channel? -# Because that's about all the human eye can see. More here (from a -# photography standpoint): `Luminous Landscape bit depth tutorial -# `_. -# # Each inner list represents a pixel. Here, with an RGB image, there # are 3 values. Since it's a black and white image, R, G, and B are all # similar. An RGBA (where A is alpha, or transparency), has 4 values @@ -188,7 +180,7 @@ # interesting regions is the histogram. To create a histogram of our # image data, we use the :func:`~matplotlib.pyplot.hist` function. -plt.hist(lum_img.ravel(), bins=256, range=(0.0, 1.0), fc='k', ec='k') +plt.hist(lum_img.ravel(), bins=range(256), fc='k', ec='k') ############################################################################### # Most often, the "interesting" part of the image is around the peak, @@ -196,29 +188,23 @@ # below the peak. In our histogram, it looks like there's not much # useful information in the high end (not many white things in the # image). Let's adjust the upper limit, so that we effectively "zoom in -# on" part of the histogram. We do this by passing the clim argument to -# imshow. You could also do this by calling the -# :meth:`~matplotlib.cm.ScalarMappable.set_clim` method of the image plot -# object, but make sure that you do so in the same cell as your plot -# command when working with the Jupyter Notebook - it will not change -# plots from earlier cells. +# on" part of the histogram. We do this by setting *clim*, the colormap +# limits. # -# You can specify the clim in the call to ``plot``. +# This can be done by passing a *clim* keyword argument in the call to +# ``imshow``. -imgplot = plt.imshow(lum_img, clim=(0.0, 0.7)) +plt.imshow(lum_img, clim=(0, 175)) ############################################################################### -# You can also specify the clim using the returned object -fig = plt.figure() -ax = fig.add_subplot(1, 2, 1) -imgplot = plt.imshow(lum_img) -ax.set_title('Before') -plt.colorbar(ticks=[0.1, 0.3, 0.5, 0.7], orientation='horizontal') -ax = fig.add_subplot(1, 2, 2) +# This can also be done by calling the +# :meth:`~matplotlib.cm.ScalarMappable.set_clim` method of the returned image +# plot object, but make sure that you do so in the same cell as your plot +# command when working with the Jupyter Notebook - it will not change +# plots from earlier cells. + imgplot = plt.imshow(lum_img) -imgplot.set_clim(0.0, 0.7) -ax.set_title('After') -plt.colorbar(ticks=[0.1, 0.3, 0.5, 0.7], orientation='horizontal') +imgplot.set_clim(0, 175) ############################################################################### # .. _Interpolation: @@ -242,19 +228,17 @@ # We'll use the Pillow library that we used to load the image also to resize # the image. -from PIL import Image - img = Image.open('../../doc/_static/stinkbug.png') img.thumbnail((64, 64), Image.ANTIALIAS) # resizes image in-place imgplot = plt.imshow(img) ############################################################################### -# Here we have the default interpolation, bilinear, since we did not +# Here we use the default interpolation ("nearest"), since we did not # give :func:`~matplotlib.pyplot.imshow` any interpolation argument. # -# Let's try some others. Here's "nearest", which does no interpolation. +# Let's try some others. Here's "bilinear": -imgplot = plt.imshow(img, interpolation="nearest") +imgplot = plt.imshow(img, interpolation="bilinear") ############################################################################### # and bicubic: