From b39ef4a4e2d012444777f2395cafbe2669413caf Mon Sep 17 00:00:00 2001 From: Jody Klymak Date: Tue, 10 Jan 2023 15:36:40 -0800 Subject: [PATCH] Backport PR #24934: Swap ipython directives for code-block directives --- tutorials/colors/colormapnorms.py | 25 ++++++++++--------------- 1 file changed, 10 insertions(+), 15 deletions(-) diff --git a/tutorials/colors/colormapnorms.py b/tutorials/colors/colormapnorms.py index caa6bb35f9b7..e7ca0e61bfc7 100644 --- a/tutorials/colors/colormapnorms.py +++ b/tutorials/colors/colormapnorms.py @@ -20,14 +20,12 @@ Artists that map data to color pass the arguments *vmin* and *vmax* to construct a :func:`matplotlib.colors.Normalize` instance, then call it: -.. ipython:: +.. code-block:: pycon - In [1]: import matplotlib as mpl - - In [2]: norm = mpl.colors.Normalize(vmin=-1, vmax=1) - - In [3]: norm(0) - Out[3]: 0.5 + >>> import matplotlib as mpl + >>> norm = mpl.colors.Normalize(vmin=-1, vmax=1) + >>> norm(0) + 0.5 However, there are sometimes cases where it is useful to map data to colormaps in a non-linear fashion. @@ -192,15 +190,12 @@ # lower out-of-bounds values to the range over which the colors are # distributed. For instance: # -# .. ipython:: -# -# In [2]: import matplotlib.colors as colors -# -# In [3]: bounds = np.array([-0.25, -0.125, 0, 0.5, 1]) -# -# In [4]: norm = colors.BoundaryNorm(boundaries=bounds, ncolors=4) +# .. code-block:: pycon # -# In [5]: print(norm([-0.2, -0.15, -0.02, 0.3, 0.8, 0.99])) +# >>> import matplotlib.colors as colors +# >>> bounds = np.array([-0.25, -0.125, 0, 0.5, 1]) +# >>> norm = colors.BoundaryNorm(boundaries=bounds, ncolors=4) +# >>> print(norm([-0.2, -0.15, -0.02, 0.3, 0.8, 0.99])) # [0 0 1 2 3 3] # # Note: Unlike the other norms, this norm returns values from 0 to *ncolors*-1.