diff --git a/lib/matplotlib/__init__.py b/lib/matplotlib/__init__.py index dc8c004a598b..13bfa81d9ffa 100644 --- a/lib/matplotlib/__init__.py +++ b/lib/matplotlib/__init__.py @@ -129,6 +129,8 @@ "interactive", "is_interactive", "colormaps", + "multivar_colormaps", + "bivar_colormaps", "color_sequences", ] @@ -1543,4 +1545,6 @@ def validate_backend(s): # workaround: we must defer colormaps import to after loading rcParams, because # colormap creation depends on rcParams from matplotlib.cm import _colormaps as colormaps # noqa: E402 +from matplotlib.cm import _multivar_colormaps as multivar_colormaps # noqa: E402 +from matplotlib.cm import _bivar_colormaps as bivar_colormaps # noqa: E402 from matplotlib.colors import _color_sequences as color_sequences # noqa: E402 diff --git a/lib/matplotlib/__init__.pyi b/lib/matplotlib/__init__.pyi index 05dc927dc6c9..5b6797d3a7da 100644 --- a/lib/matplotlib/__init__.pyi +++ b/lib/matplotlib/__init__.pyi @@ -116,4 +116,6 @@ def _preprocess_data( ) -> Callable: ... from matplotlib.cm import _colormaps as colormaps # noqa: E402 +from matplotlib.cm import _multivar_colormaps as multivar_colormaps # noqa: E402 +from matplotlib.cm import _bivar_colormaps as bivar_colormaps # noqa: E402 from matplotlib.colors import _color_sequences as color_sequences # noqa: E402 diff --git a/lib/matplotlib/_cm_bivar.py b/lib/matplotlib/_cm_bivar.py new file mode 100644 index 000000000000..53c0d48d7d6c --- /dev/null +++ b/lib/matplotlib/_cm_bivar.py @@ -0,0 +1,1312 @@ +# auto-generated by https://github.com/trygvrad/multivariate_colormaps +# date: 2024-05-24 + +import numpy as np +from matplotlib.colors import SegmentedBivarColormap + +BiPeak = np.array( + [0.000, 0.674, 0.931, 0.000, 0.680, 0.922, 0.000, 0.685, 0.914, 0.000, + 0.691, 0.906, 0.000, 0.696, 0.898, 0.000, 0.701, 0.890, 0.000, 0.706, + 0.882, 0.000, 0.711, 0.875, 0.000, 0.715, 0.867, 0.000, 0.720, 0.860, + 0.000, 0.725, 0.853, 0.000, 0.729, 0.845, 0.000, 0.733, 0.838, 0.000, + 0.737, 0.831, 0.000, 0.741, 0.824, 0.000, 0.745, 0.816, 0.000, 0.749, + 0.809, 0.000, 0.752, 0.802, 0.000, 0.756, 0.794, 0.000, 0.759, 0.787, + 0.000, 0.762, 0.779, 0.000, 0.765, 0.771, 0.000, 0.767, 0.764, 0.000, + 0.770, 0.755, 0.000, 0.772, 0.747, 0.000, 0.774, 0.739, 0.000, 0.776, + 0.730, 0.000, 0.777, 0.721, 0.000, 0.779, 0.712, 0.021, 0.780, 0.702, + 0.055, 0.781, 0.693, 0.079, 0.782, 0.682, 0.097, 0.782, 0.672, 0.111, + 0.782, 0.661, 0.122, 0.782, 0.650, 0.132, 0.782, 0.639, 0.140, 0.781, + 0.627, 0.147, 0.781, 0.615, 0.154, 0.780, 0.602, 0.159, 0.778, 0.589, + 0.164, 0.777, 0.576, 0.169, 0.775, 0.563, 0.173, 0.773, 0.549, 0.177, + 0.771, 0.535, 0.180, 0.768, 0.520, 0.184, 0.766, 0.505, 0.187, 0.763, + 0.490, 0.190, 0.760, 0.474, 0.193, 0.756, 0.458, 0.196, 0.753, 0.442, + 0.200, 0.749, 0.425, 0.203, 0.745, 0.408, 0.206, 0.741, 0.391, 0.210, + 0.736, 0.373, 0.213, 0.732, 0.355, 0.216, 0.727, 0.337, 0.220, 0.722, + 0.318, 0.224, 0.717, 0.298, 0.227, 0.712, 0.278, 0.231, 0.707, 0.258, + 0.235, 0.701, 0.236, 0.239, 0.696, 0.214, 0.242, 0.690, 0.190, 0.246, + 0.684, 0.165, 0.250, 0.678, 0.136, 0.000, 0.675, 0.934, 0.000, 0.681, + 0.925, 0.000, 0.687, 0.917, 0.000, 0.692, 0.909, 0.000, 0.697, 0.901, + 0.000, 0.703, 0.894, 0.000, 0.708, 0.886, 0.000, 0.713, 0.879, 0.000, + 0.718, 0.872, 0.000, 0.722, 0.864, 0.000, 0.727, 0.857, 0.000, 0.731, + 0.850, 0.000, 0.736, 0.843, 0.000, 0.740, 0.836, 0.000, 0.744, 0.829, + 0.000, 0.748, 0.822, 0.000, 0.752, 0.815, 0.000, 0.755, 0.808, 0.000, + 0.759, 0.800, 0.000, 0.762, 0.793, 0.000, 0.765, 0.786, 0.000, 0.768, + 0.778, 0.000, 0.771, 0.770, 0.000, 0.773, 0.762, 0.051, 0.776, 0.754, + 0.087, 0.778, 0.746, 0.111, 0.780, 0.737, 0.131, 0.782, 0.728, 0.146, + 0.783, 0.719, 0.159, 0.784, 0.710, 0.171, 0.785, 0.700, 0.180, 0.786, + 0.690, 0.189, 0.786, 0.680, 0.196, 0.787, 0.669, 0.202, 0.787, 0.658, + 0.208, 0.786, 0.647, 0.213, 0.786, 0.635, 0.217, 0.785, 0.623, 0.221, + 0.784, 0.610, 0.224, 0.782, 0.597, 0.227, 0.781, 0.584, 0.230, 0.779, + 0.570, 0.232, 0.777, 0.556, 0.234, 0.775, 0.542, 0.236, 0.772, 0.527, + 0.238, 0.769, 0.512, 0.240, 0.766, 0.497, 0.242, 0.763, 0.481, 0.244, + 0.760, 0.465, 0.246, 0.756, 0.448, 0.248, 0.752, 0.432, 0.250, 0.748, + 0.415, 0.252, 0.744, 0.397, 0.254, 0.739, 0.379, 0.256, 0.735, 0.361, + 0.259, 0.730, 0.343, 0.261, 0.725, 0.324, 0.264, 0.720, 0.304, 0.266, + 0.715, 0.284, 0.269, 0.709, 0.263, 0.271, 0.704, 0.242, 0.274, 0.698, + 0.220, 0.277, 0.692, 0.196, 0.280, 0.686, 0.170, 0.283, 0.680, 0.143, + 0.000, 0.676, 0.937, 0.000, 0.682, 0.928, 0.000, 0.688, 0.920, 0.000, + 0.694, 0.913, 0.000, 0.699, 0.905, 0.000, 0.704, 0.897, 0.000, 0.710, + 0.890, 0.000, 0.715, 0.883, 0.000, 0.720, 0.876, 0.000, 0.724, 0.869, + 0.000, 0.729, 0.862, 0.000, 0.734, 0.855, 0.000, 0.738, 0.848, 0.000, + 0.743, 0.841, 0.000, 0.747, 0.834, 0.000, 0.751, 0.827, 0.000, 0.755, + 0.820, 0.000, 0.759, 0.813, 0.000, 0.762, 0.806, 0.003, 0.766, 0.799, + 0.066, 0.769, 0.792, 0.104, 0.772, 0.784, 0.131, 0.775, 0.777, 0.152, + 0.777, 0.769, 0.170, 0.780, 0.761, 0.185, 0.782, 0.753, 0.198, 0.784, + 0.744, 0.209, 0.786, 0.736, 0.219, 0.787, 0.727, 0.228, 0.788, 0.717, + 0.236, 0.789, 0.708, 0.243, 0.790, 0.698, 0.249, 0.791, 0.688, 0.254, + 0.791, 0.677, 0.259, 0.791, 0.666, 0.263, 0.791, 0.654, 0.266, 0.790, + 0.643, 0.269, 0.789, 0.631, 0.272, 0.788, 0.618, 0.274, 0.787, 0.605, + 0.276, 0.785, 0.592, 0.278, 0.783, 0.578, 0.279, 0.781, 0.564, 0.280, + 0.779, 0.549, 0.282, 0.776, 0.535, 0.283, 0.773, 0.519, 0.284, 0.770, + 0.504, 0.285, 0.767, 0.488, 0.286, 0.763, 0.472, 0.287, 0.759, 0.455, + 0.288, 0.756, 0.438, 0.289, 0.751, 0.421, 0.291, 0.747, 0.403, 0.292, + 0.742, 0.385, 0.293, 0.738, 0.367, 0.295, 0.733, 0.348, 0.296, 0.728, + 0.329, 0.298, 0.723, 0.310, 0.300, 0.717, 0.290, 0.302, 0.712, 0.269, + 0.304, 0.706, 0.247, 0.306, 0.700, 0.225, 0.308, 0.694, 0.201, 0.310, + 0.688, 0.176, 0.312, 0.682, 0.149, 0.000, 0.678, 0.939, 0.000, 0.683, + 0.931, 0.000, 0.689, 0.923, 0.000, 0.695, 0.916, 0.000, 0.701, 0.908, + 0.000, 0.706, 0.901, 0.000, 0.711, 0.894, 0.000, 0.717, 0.887, 0.000, + 0.722, 0.880, 0.000, 0.727, 0.873, 0.000, 0.732, 0.866, 0.000, 0.736, + 0.859, 0.000, 0.741, 0.853, 0.000, 0.745, 0.846, 0.000, 0.750, 0.839, + 0.000, 0.754, 0.833, 0.035, 0.758, 0.826, 0.091, 0.762, 0.819, 0.126, + 0.765, 0.812, 0.153, 0.769, 0.805, 0.174, 0.772, 0.798, 0.193, 0.775, + 0.791, 0.209, 0.778, 0.783, 0.223, 0.781, 0.776, 0.236, 0.784, 0.768, + 0.247, 0.786, 0.760, 0.257, 0.788, 0.752, 0.266, 0.790, 0.743, 0.273, + 0.791, 0.734, 0.280, 0.793, 0.725, 0.287, 0.794, 0.715, 0.292, 0.794, + 0.706, 0.297, 0.795, 0.695, 0.301, 0.795, 0.685, 0.305, 0.795, 0.674, + 0.308, 0.795, 0.662, 0.310, 0.794, 0.651, 0.312, 0.794, 0.638, 0.314, + 0.792, 0.626, 0.316, 0.791, 0.613, 0.317, 0.789, 0.599, 0.318, 0.787, + 0.586, 0.319, 0.785, 0.571, 0.320, 0.783, 0.557, 0.320, 0.780, 0.542, + 0.321, 0.777, 0.527, 0.321, 0.774, 0.511, 0.322, 0.770, 0.495, 0.322, + 0.767, 0.478, 0.323, 0.763, 0.462, 0.323, 0.759, 0.445, 0.324, 0.755, + 0.427, 0.325, 0.750, 0.410, 0.325, 0.745, 0.391, 0.326, 0.741, 0.373, + 0.327, 0.736, 0.354, 0.328, 0.730, 0.335, 0.329, 0.725, 0.315, 0.330, + 0.720, 0.295, 0.331, 0.714, 0.274, 0.333, 0.708, 0.253, 0.334, 0.702, + 0.230, 0.336, 0.696, 0.207, 0.337, 0.690, 0.182, 0.339, 0.684, 0.154, + 0.000, 0.679, 0.942, 0.000, 0.685, 0.934, 0.000, 0.691, 0.927, 0.000, + 0.696, 0.919, 0.000, 0.702, 0.912, 0.000, 0.708, 0.905, 0.000, 0.713, + 0.898, 0.000, 0.718, 0.891, 0.000, 0.724, 0.884, 0.000, 0.729, 0.877, + 0.000, 0.734, 0.871, 0.000, 0.739, 0.864, 0.000, 0.743, 0.857, 0.035, + 0.748, 0.851, 0.096, 0.752, 0.844, 0.133, 0.757, 0.838, 0.161, 0.761, + 0.831, 0.185, 0.765, 0.825, 0.205, 0.769, 0.818, 0.223, 0.772, 0.811, + 0.238, 0.776, 0.804, 0.252, 0.779, 0.797, 0.265, 0.782, 0.790, 0.276, + 0.785, 0.783, 0.286, 0.788, 0.775, 0.296, 0.790, 0.767, 0.304, 0.792, + 0.759, 0.311, 0.794, 0.751, 0.318, 0.796, 0.742, 0.324, 0.797, 0.733, + 0.329, 0.798, 0.723, 0.334, 0.799, 0.714, 0.338, 0.799, 0.703, 0.341, + 0.800, 0.693, 0.344, 0.800, 0.682, 0.347, 0.799, 0.670, 0.349, 0.799, + 0.659, 0.351, 0.798, 0.646, 0.352, 0.797, 0.634, 0.353, 0.795, 0.621, + 0.354, 0.794, 0.607, 0.354, 0.792, 0.593, 0.355, 0.789, 0.579, 0.355, + 0.787, 0.564, 0.355, 0.784, 0.549, 0.355, 0.781, 0.534, 0.355, 0.778, + 0.518, 0.355, 0.774, 0.502, 0.355, 0.770, 0.485, 0.355, 0.766, 0.468, + 0.355, 0.762, 0.451, 0.355, 0.758, 0.434, 0.355, 0.753, 0.416, 0.356, + 0.748, 0.397, 0.356, 0.743, 0.379, 0.356, 0.738, 0.360, 0.357, 0.733, + 0.340, 0.357, 0.728, 0.321, 0.358, 0.722, 0.300, 0.359, 0.716, 0.279, + 0.360, 0.710, 0.258, 0.361, 0.704, 0.235, 0.361, 0.698, 0.212, 0.362, + 0.692, 0.187, 0.363, 0.686, 0.160, 0.000, 0.680, 0.945, 0.000, 0.686, + 0.937, 0.000, 0.692, 0.930, 0.000, 0.698, 0.922, 0.000, 0.703, 0.915, + 0.000, 0.709, 0.908, 0.000, 0.715, 0.901, 0.000, 0.720, 0.894, 0.000, + 0.726, 0.888, 0.000, 0.731, 0.881, 0.007, 0.736, 0.875, 0.084, 0.741, + 0.869, 0.127, 0.746, 0.862, 0.159, 0.751, 0.856, 0.185, 0.755, 0.850, + 0.208, 0.760, 0.843, 0.227, 0.764, 0.837, 0.245, 0.768, 0.830, 0.260, + 0.772, 0.824, 0.275, 0.776, 0.817, 0.288, 0.779, 0.811, 0.300, 0.783, + 0.804, 0.310, 0.786, 0.797, 0.320, 0.789, 0.789, 0.329, 0.792, 0.782, + 0.337, 0.794, 0.774, 0.345, 0.796, 0.766, 0.351, 0.798, 0.758, 0.357, + 0.800, 0.749, 0.363, 0.801, 0.740, 0.367, 0.803, 0.731, 0.371, 0.803, + 0.721, 0.375, 0.804, 0.711, 0.378, 0.804, 0.701, 0.380, 0.804, 0.690, + 0.382, 0.804, 0.679, 0.384, 0.803, 0.667, 0.385, 0.802, 0.654, 0.386, + 0.801, 0.642, 0.386, 0.800, 0.629, 0.387, 0.798, 0.615, 0.387, 0.796, + 0.601, 0.387, 0.793, 0.587, 0.387, 0.791, 0.572, 0.387, 0.788, 0.557, + 0.386, 0.785, 0.541, 0.386, 0.781, 0.525, 0.385, 0.778, 0.509, 0.385, + 0.774, 0.492, 0.385, 0.770, 0.475, 0.384, 0.765, 0.457, 0.384, 0.761, + 0.440, 0.384, 0.756, 0.422, 0.384, 0.751, 0.403, 0.384, 0.746, 0.384, + 0.384, 0.741, 0.365, 0.384, 0.735, 0.346, 0.384, 0.730, 0.326, 0.384, + 0.724, 0.305, 0.384, 0.718, 0.284, 0.385, 0.712, 0.263, 0.385, 0.706, + 0.240, 0.386, 0.700, 0.217, 0.386, 0.694, 0.192, 0.387, 0.687, 0.165, + 0.000, 0.680, 0.948, 0.000, 0.687, 0.940, 0.000, 0.693, 0.933, 0.000, + 0.699, 0.925, 0.000, 0.705, 0.918, 0.000, 0.711, 0.912, 0.000, 0.716, + 0.905, 0.000, 0.722, 0.898, 0.050, 0.728, 0.892, 0.109, 0.733, 0.886, + 0.147, 0.738, 0.879, 0.177, 0.743, 0.873, 0.202, 0.748, 0.867, 0.224, + 0.753, 0.861, 0.243, 0.758, 0.855, 0.261, 0.763, 0.849, 0.277, 0.767, + 0.842, 0.292, 0.771, 0.836, 0.305, 0.775, 0.830, 0.318, 0.779, 0.823, + 0.329, 0.783, 0.817, 0.340, 0.787, 0.810, 0.350, 0.790, 0.803, 0.359, + 0.793, 0.796, 0.367, 0.796, 0.789, 0.374, 0.798, 0.782, 0.381, 0.801, + 0.774, 0.387, 0.803, 0.766, 0.393, 0.804, 0.757, 0.397, 0.806, 0.748, + 0.402, 0.807, 0.739, 0.405, 0.808, 0.729, 0.408, 0.809, 0.719, 0.411, + 0.809, 0.709, 0.413, 0.809, 0.698, 0.415, 0.808, 0.687, 0.416, 0.808, + 0.675, 0.417, 0.807, 0.663, 0.417, 0.806, 0.650, 0.417, 0.804, 0.637, + 0.418, 0.802, 0.623, 0.417, 0.800, 0.609, 0.417, 0.798, 0.594, 0.416, + 0.795, 0.579, 0.416, 0.792, 0.564, 0.415, 0.789, 0.548, 0.414, 0.785, + 0.532, 0.414, 0.781, 0.515, 0.413, 0.777, 0.499, 0.412, 0.773, 0.481, + 0.412, 0.769, 0.464, 0.411, 0.764, 0.446, 0.410, 0.759, 0.428, 0.410, + 0.754, 0.409, 0.409, 0.749, 0.390, 0.409, 0.743, 0.371, 0.409, 0.738, + 0.351, 0.409, 0.732, 0.331, 0.408, 0.726, 0.310, 0.408, 0.720, 0.289, + 0.408, 0.714, 0.268, 0.408, 0.708, 0.245, 0.409, 0.702, 0.222, 0.409, + 0.695, 0.197, 0.409, 0.689, 0.170, 0.000, 0.681, 0.950, 0.000, 0.688, + 0.943, 0.000, 0.694, 0.936, 0.000, 0.700, 0.929, 0.000, 0.706, 0.922, + 0.000, 0.712, 0.915, 0.074, 0.718, 0.908, 0.124, 0.724, 0.902, 0.159, + 0.730, 0.896, 0.188, 0.735, 0.890, 0.213, 0.740, 0.884, 0.235, 0.746, + 0.878, 0.255, 0.751, 0.872, 0.273, 0.756, 0.866, 0.289, 0.761, 0.860, + 0.305, 0.766, 0.854, 0.319, 0.770, 0.848, 0.332, 0.775, 0.842, 0.344, + 0.779, 0.836, 0.356, 0.783, 0.830, 0.366, 0.787, 0.823, 0.376, 0.790, + 0.817, 0.385, 0.794, 0.810, 0.394, 0.797, 0.803, 0.401, 0.800, 0.796, + 0.408, 0.802, 0.789, 0.414, 0.805, 0.781, 0.420, 0.807, 0.773, 0.425, + 0.809, 0.765, 0.430, 0.810, 0.756, 0.433, 0.812, 0.747, 0.437, 0.813, + 0.738, 0.440, 0.813, 0.728, 0.442, 0.814, 0.717, 0.444, 0.813, 0.706, + 0.445, 0.813, 0.695, 0.446, 0.812, 0.683, 0.446, 0.811, 0.671, 0.447, + 0.810, 0.658, 0.447, 0.809, 0.645, 0.446, 0.807, 0.631, 0.446, 0.804, + 0.617, 0.445, 0.802, 0.602, 0.444, 0.799, 0.587, 0.443, 0.796, 0.571, + 0.442, 0.792, 0.555, 0.441, 0.789, 0.539, 0.440, 0.785, 0.522, 0.439, + 0.781, 0.505, 0.438, 0.776, 0.488, 0.437, 0.772, 0.470, 0.436, 0.767, + 0.452, 0.435, 0.762, 0.433, 0.435, 0.757, 0.415, 0.434, 0.751, 0.396, + 0.433, 0.746, 0.376, 0.432, 0.740, 0.356, 0.432, 0.734, 0.336, 0.431, + 0.728, 0.315, 0.431, 0.722, 0.294, 0.431, 0.716, 0.272, 0.430, 0.710, + 0.250, 0.430, 0.703, 0.226, 0.430, 0.697, 0.201, 0.430, 0.690, 0.175, + 0.000, 0.682, 0.953, 0.000, 0.689, 0.946, 0.000, 0.695, 0.938, 0.002, + 0.701, 0.932, 0.086, 0.708, 0.925, 0.133, 0.714, 0.918, 0.167, 0.720, + 0.912, 0.196, 0.726, 0.906, 0.221, 0.731, 0.900, 0.243, 0.737, 0.894, + 0.263, 0.743, 0.888, 0.281, 0.748, 0.882, 0.298, 0.753, 0.876, 0.314, + 0.759, 0.870, 0.329, 0.764, 0.865, 0.342, 0.768, 0.859, 0.355, 0.773, + 0.853, 0.368, 0.778, 0.847, 0.379, 0.782, 0.842, 0.390, 0.786, 0.836, + 0.400, 0.790, 0.830, 0.409, 0.794, 0.823, 0.417, 0.798, 0.817, 0.425, + 0.801, 0.810, 0.433, 0.804, 0.803, 0.439, 0.807, 0.796, 0.445, 0.809, + 0.789, 0.451, 0.811, 0.781, 0.456, 0.813, 0.773, 0.460, 0.815, 0.764, + 0.463, 0.816, 0.755, 0.466, 0.817, 0.746, 0.469, 0.818, 0.736, 0.471, + 0.818, 0.725, 0.472, 0.818, 0.715, 0.473, 0.818, 0.703, 0.474, 0.817, + 0.691, 0.474, 0.816, 0.679, 0.474, 0.815, 0.666, 0.474, 0.813, 0.653, + 0.473, 0.811, 0.639, 0.473, 0.809, 0.624, 0.472, 0.806, 0.610, 0.471, + 0.803, 0.594, 0.469, 0.800, 0.579, 0.468, 0.796, 0.562, 0.467, 0.792, + 0.546, 0.466, 0.788, 0.529, 0.464, 0.784, 0.512, 0.463, 0.780, 0.494, + 0.462, 0.775, 0.476, 0.460, 0.770, 0.458, 0.459, 0.765, 0.439, 0.458, + 0.759, 0.420, 0.457, 0.754, 0.401, 0.456, 0.748, 0.381, 0.455, 0.742, + 0.361, 0.454, 0.736, 0.341, 0.453, 0.730, 0.320, 0.453, 0.724, 0.299, + 0.452, 0.718, 0.277, 0.452, 0.711, 0.254, 0.451, 0.705, 0.231, 0.451, + 0.698, 0.206, 0.450, 0.691, 0.179, 0.000, 0.683, 0.955, 0.013, 0.689, + 0.948, 0.092, 0.696, 0.941, 0.137, 0.702, 0.935, 0.171, 0.709, 0.928, + 0.200, 0.715, 0.922, 0.225, 0.721, 0.916, 0.247, 0.727, 0.909, 0.267, + 0.733, 0.904, 0.286, 0.739, 0.898, 0.303, 0.745, 0.892, 0.320, 0.750, + 0.886, 0.335, 0.756, 0.881, 0.350, 0.761, 0.875, 0.363, 0.766, 0.870, + 0.376, 0.771, 0.864, 0.388, 0.776, 0.859, 0.400, 0.781, 0.853, 0.411, + 0.785, 0.847, 0.421, 0.790, 0.842, 0.430, 0.794, 0.836, 0.439, 0.798, + 0.830, 0.448, 0.802, 0.824, 0.455, 0.805, 0.817, 0.462, 0.808, 0.810, + 0.469, 0.811, 0.804, 0.475, 0.814, 0.796, 0.480, 0.816, 0.789, 0.484, + 0.818, 0.781, 0.488, 0.820, 0.772, 0.492, 0.821, 0.763, 0.495, 0.822, + 0.754, 0.497, 0.823, 0.744, 0.499, 0.823, 0.734, 0.500, 0.823, 0.723, + 0.501, 0.823, 0.712, 0.501, 0.822, 0.700, 0.501, 0.821, 0.687, 0.501, + 0.819, 0.674, 0.500, 0.818, 0.661, 0.499, 0.815, 0.647, 0.498, 0.813, + 0.632, 0.497, 0.810, 0.617, 0.496, 0.807, 0.602, 0.494, 0.804, 0.586, + 0.493, 0.800, 0.569, 0.491, 0.796, 0.553, 0.490, 0.792, 0.536, 0.488, + 0.787, 0.518, 0.486, 0.783, 0.500, 0.485, 0.778, 0.482, 0.483, 0.773, + 0.463, 0.482, 0.767, 0.445, 0.480, 0.762, 0.425, 0.479, 0.756, 0.406, + 0.478, 0.750, 0.386, 0.477, 0.744, 0.366, 0.476, 0.738, 0.345, 0.475, + 0.732, 0.325, 0.474, 0.726, 0.303, 0.473, 0.719, 0.281, 0.472, 0.713, + 0.258, 0.471, 0.706, 0.235, 0.470, 0.699, 0.210, 0.469, 0.692, 0.184, + 0.095, 0.683, 0.958, 0.139, 0.690, 0.951, 0.173, 0.697, 0.944, 0.201, + 0.703, 0.938, 0.226, 0.710, 0.931, 0.249, 0.716, 0.925, 0.269, 0.723, + 0.919, 0.288, 0.729, 0.913, 0.306, 0.735, 0.907, 0.323, 0.741, 0.902, + 0.339, 0.747, 0.896, 0.354, 0.752, 0.891, 0.368, 0.758, 0.885, 0.382, + 0.764, 0.880, 0.394, 0.769, 0.875, 0.407, 0.774, 0.869, 0.418, 0.779, + 0.864, 0.429, 0.784, 0.859, 0.440, 0.789, 0.853, 0.450, 0.793, 0.848, + 0.459, 0.798, 0.842, 0.468, 0.802, 0.836, 0.476, 0.806, 0.830, 0.483, + 0.809, 0.824, 0.490, 0.812, 0.818, 0.496, 0.815, 0.811, 0.502, 0.818, + 0.804, 0.507, 0.821, 0.796, 0.512, 0.823, 0.789, 0.515, 0.825, 0.780, + 0.519, 0.826, 0.772, 0.521, 0.827, 0.762, 0.524, 0.828, 0.753, 0.525, + 0.828, 0.742, 0.526, 0.828, 0.732, 0.527, 0.828, 0.720, 0.527, 0.827, + 0.708, 0.527, 0.826, 0.696, 0.526, 0.824, 0.683, 0.525, 0.822, 0.669, + 0.524, 0.820, 0.655, 0.523, 0.817, 0.640, 0.522, 0.814, 0.625, 0.520, + 0.811, 0.609, 0.518, 0.808, 0.593, 0.516, 0.804, 0.576, 0.515, 0.800, + 0.559, 0.513, 0.795, 0.542, 0.511, 0.791, 0.524, 0.509, 0.786, 0.506, + 0.507, 0.781, 0.488, 0.505, 0.775, 0.469, 0.504, 0.770, 0.450, 0.502, + 0.764, 0.431, 0.500, 0.759, 0.411, 0.499, 0.753, 0.391, 0.497, 0.746, + 0.371, 0.496, 0.740, 0.350, 0.495, 0.734, 0.329, 0.494, 0.727, 0.307, + 0.492, 0.721, 0.285, 0.491, 0.714, 0.262, 0.490, 0.707, 0.239, 0.489, + 0.700, 0.214, 0.488, 0.693, 0.188, 0.172, 0.684, 0.961, 0.201, 0.691, + 0.954, 0.226, 0.698, 0.947, 0.248, 0.704, 0.941, 0.269, 0.711, 0.934, + 0.289, 0.717, 0.928, 0.307, 0.724, 0.922, 0.324, 0.730, 0.917, 0.340, + 0.736, 0.911, 0.356, 0.743, 0.906, 0.370, 0.749, 0.900, 0.384, 0.755, + 0.895, 0.398, 0.760, 0.890, 0.411, 0.766, 0.885, 0.423, 0.772, 0.880, + 0.435, 0.777, 0.874, 0.446, 0.782, 0.869, 0.457, 0.787, 0.864, 0.467, + 0.792, 0.859, 0.477, 0.797, 0.854, 0.486, 0.801, 0.848, 0.494, 0.806, + 0.843, 0.502, 0.810, 0.837, 0.510, 0.813, 0.831, 0.517, 0.817, 0.825, + 0.523, 0.820, 0.818, 0.528, 0.823, 0.811, 0.533, 0.825, 0.804, 0.538, + 0.828, 0.797, 0.542, 0.829, 0.788, 0.545, 0.831, 0.780, 0.547, 0.832, + 0.771, 0.549, 0.833, 0.761, 0.551, 0.833, 0.751, 0.552, 0.833, 0.740, + 0.552, 0.833, 0.729, 0.552, 0.832, 0.717, 0.551, 0.830, 0.704, 0.551, + 0.829, 0.691, 0.550, 0.827, 0.677, 0.548, 0.824, 0.663, 0.547, 0.822, + 0.648, 0.545, 0.819, 0.632, 0.543, 0.815, 0.617, 0.541, 0.812, 0.600, + 0.539, 0.808, 0.583, 0.537, 0.803, 0.566, 0.535, 0.799, 0.549, 0.533, + 0.794, 0.531, 0.531, 0.789, 0.512, 0.529, 0.784, 0.494, 0.527, 0.778, + 0.475, 0.525, 0.773, 0.455, 0.523, 0.767, 0.436, 0.521, 0.761, 0.416, + 0.519, 0.755, 0.396, 0.517, 0.748, 0.375, 0.516, 0.742, 0.354, 0.514, + 0.735, 0.333, 0.513, 0.729, 0.311, 0.511, 0.722, 0.289, 0.510, 0.715, + 0.266, 0.509, 0.708, 0.242, 0.507, 0.701, 0.218, 0.506, 0.694, 0.191, + 0.224, 0.684, 0.963, 0.247, 0.691, 0.956, 0.268, 0.698, 0.950, 0.287, + 0.705, 0.943, 0.305, 0.712, 0.937, 0.323, 0.719, 0.931, 0.339, 0.725, + 0.926, 0.355, 0.732, 0.920, 0.370, 0.738, 0.915, 0.385, 0.744, 0.909, + 0.399, 0.751, 0.904, 0.412, 0.757, 0.899, 0.425, 0.763, 0.894, 0.438, + 0.768, 0.889, 0.450, 0.774, 0.884, 0.461, 0.780, 0.879, 0.472, 0.785, + 0.875, 0.483, 0.790, 0.870, 0.493, 0.795, 0.865, 0.502, 0.800, 0.860, + 0.511, 0.805, 0.855, 0.520, 0.809, 0.849, 0.528, 0.814, 0.844, 0.535, + 0.818, 0.838, 0.542, 0.821, 0.832, 0.548, 0.824, 0.826, 0.554, 0.827, + 0.819, 0.559, 0.830, 0.812, 0.563, 0.832, 0.805, 0.567, 0.834, 0.797, + 0.570, 0.836, 0.788, 0.572, 0.837, 0.779, 0.574, 0.838, 0.770, 0.575, + 0.838, 0.760, 0.576, 0.838, 0.749, 0.576, 0.838, 0.737, 0.576, 0.837, + 0.725, 0.575, 0.835, 0.713, 0.574, 0.834, 0.699, 0.573, 0.831, 0.685, + 0.571, 0.829, 0.671, 0.570, 0.826, 0.656, 0.568, 0.823, 0.640, 0.566, + 0.819, 0.624, 0.563, 0.815, 0.607, 0.561, 0.811, 0.590, 0.559, 0.807, + 0.573, 0.556, 0.802, 0.555, 0.554, 0.797, 0.537, 0.552, 0.792, 0.518, + 0.549, 0.786, 0.499, 0.547, 0.781, 0.480, 0.545, 0.775, 0.460, 0.543, + 0.769, 0.441, 0.541, 0.763, 0.420, 0.539, 0.756, 0.400, 0.537, 0.750, + 0.379, 0.535, 0.743, 0.358, 0.533, 0.737, 0.337, 0.531, 0.730, 0.315, + 0.530, 0.723, 0.293, 0.528, 0.716, 0.270, 0.527, 0.709, 0.246, 0.525, + 0.702, 0.221, 0.524, 0.694, 0.195, 0.265, 0.685, 0.965, 0.284, 0.692, + 0.959, 0.303, 0.699, 0.952, 0.320, 0.706, 0.946, 0.337, 0.713, 0.940, + 0.353, 0.720, 0.935, 0.369, 0.726, 0.929, 0.384, 0.733, 0.924, 0.398, + 0.739, 0.918, 0.412, 0.746, 0.913, 0.425, 0.752, 0.908, 0.438, 0.759, + 0.903, 0.451, 0.765, 0.899, 0.463, 0.771, 0.894, 0.475, 0.777, 0.889, + 0.486, 0.782, 0.884, 0.497, 0.788, 0.880, 0.507, 0.793, 0.875, 0.517, + 0.799, 0.870, 0.527, 0.804, 0.866, 0.536, 0.809, 0.861, 0.544, 0.813, + 0.856, 0.552, 0.818, 0.850, 0.560, 0.822, 0.845, 0.566, 0.826, 0.839, + 0.573, 0.829, 0.833, 0.578, 0.832, 0.827, 0.583, 0.835, 0.820, 0.587, + 0.837, 0.813, 0.591, 0.839, 0.805, 0.594, 0.841, 0.797, 0.596, 0.842, + 0.788, 0.598, 0.843, 0.778, 0.599, 0.843, 0.768, 0.600, 0.843, 0.758, + 0.600, 0.843, 0.746, 0.599, 0.842, 0.734, 0.599, 0.840, 0.721, 0.597, + 0.838, 0.708, 0.596, 0.836, 0.694, 0.594, 0.834, 0.679, 0.592, 0.831, + 0.663, 0.590, 0.827, 0.648, 0.587, 0.823, 0.631, 0.585, 0.819, 0.614, + 0.582, 0.815, 0.597, 0.580, 0.810, 0.579, 0.577, 0.805, 0.561, 0.575, + 0.800, 0.542, 0.572, 0.795, 0.524, 0.569, 0.789, 0.504, 0.567, 0.783, + 0.485, 0.565, 0.777, 0.465, 0.562, 0.771, 0.445, 0.560, 0.765, 0.425, + 0.558, 0.758, 0.404, 0.556, 0.752, 0.383, 0.554, 0.745, 0.362, 0.552, + 0.738, 0.341, 0.550, 0.731, 0.319, 0.548, 0.724, 0.296, 0.546, 0.717, + 0.273, 0.544, 0.709, 0.249, 0.542, 0.702, 0.224, 0.541, 0.695, 0.198, + 0.299, 0.685, 0.968, 0.317, 0.692, 0.961, 0.334, 0.699, 0.955, 0.350, + 0.706, 0.949, 0.366, 0.713, 0.943, 0.381, 0.720, 0.938, 0.395, 0.727, + 0.932, 0.410, 0.734, 0.927, 0.423, 0.741, 0.922, 0.437, 0.747, 0.917, + 0.450, 0.754, 0.912, 0.463, 0.760, 0.907, 0.475, 0.767, 0.903, 0.487, + 0.773, 0.898, 0.498, 0.779, 0.894, 0.509, 0.785, 0.889, 0.520, 0.791, + 0.885, 0.531, 0.796, 0.880, 0.540, 0.802, 0.876, 0.550, 0.807, 0.871, + 0.559, 0.812, 0.867, 0.568, 0.817, 0.862, 0.576, 0.822, 0.857, 0.583, + 0.826, 0.852, 0.590, 0.830, 0.847, 0.596, 0.834, 0.841, 0.602, 0.837, + 0.835, 0.607, 0.840, 0.828, 0.611, 0.843, 0.821, 0.615, 0.845, 0.814, + 0.618, 0.846, 0.805, 0.620, 0.848, 0.797, 0.622, 0.848, 0.787, 0.623, + 0.849, 0.777, 0.623, 0.849, 0.766, 0.623, 0.848, 0.755, 0.622, 0.847, + 0.743, 0.621, 0.845, 0.730, 0.620, 0.843, 0.716, 0.618, 0.841, 0.702, + 0.616, 0.838, 0.687, 0.613, 0.835, 0.671, 0.611, 0.831, 0.655, 0.608, + 0.827, 0.638, 0.606, 0.823, 0.621, 0.603, 0.818, 0.604, 0.600, 0.814, + 0.585, 0.597, 0.808, 0.567, 0.594, 0.803, 0.548, 0.592, 0.797, 0.529, + 0.589, 0.792, 0.510, 0.586, 0.785, 0.490, 0.584, 0.779, 0.470, 0.581, + 0.773, 0.450, 0.579, 0.766, 0.429, 0.576, 0.760, 0.408, 0.574, 0.753, + 0.387, 0.572, 0.746, 0.366, 0.569, 0.739, 0.344, 0.567, 0.732, 0.322, + 0.565, 0.725, 0.299, 0.563, 0.717, 0.276, 0.561, 0.710, 0.252, 0.559, + 0.703, 0.227, 0.557, 0.695, 0.201, 0.329, 0.685, 0.970, 0.346, 0.692, + 0.964, 0.362, 0.699, 0.958, 0.377, 0.707, 0.952, 0.392, 0.714, 0.946, + 0.406, 0.721, 0.941, 0.420, 0.728, 0.935, 0.434, 0.735, 0.930, 0.447, + 0.742, 0.925, 0.460, 0.749, 0.920, 0.473, 0.756, 0.916, 0.485, 0.762, + 0.911, 0.497, 0.769, 0.907, 0.509, 0.775, 0.903, 0.521, 0.781, 0.898, + 0.532, 0.788, 0.894, 0.542, 0.794, 0.890, 0.553, 0.799, 0.886, 0.563, + 0.805, 0.882, 0.572, 0.811, 0.877, 0.581, 0.816, 0.873, 0.590, 0.821, + 0.868, 0.598, 0.826, 0.864, 0.606, 0.830, 0.859, 0.613, 0.834, 0.854, + 0.619, 0.838, 0.848, 0.625, 0.842, 0.842, 0.630, 0.845, 0.836, 0.634, + 0.848, 0.829, 0.638, 0.850, 0.822, 0.641, 0.852, 0.814, 0.643, 0.853, + 0.805, 0.645, 0.854, 0.796, 0.645, 0.854, 0.786, 0.646, 0.854, 0.775, + 0.645, 0.853, 0.764, 0.645, 0.852, 0.751, 0.643, 0.851, 0.738, 0.642, + 0.848, 0.725, 0.639, 0.846, 0.710, 0.637, 0.843, 0.695, 0.635, 0.839, + 0.679, 0.632, 0.836, 0.662, 0.629, 0.831, 0.645, 0.626, 0.827, 0.628, + 0.623, 0.822, 0.610, 0.620, 0.817, 0.592, 0.617, 0.811, 0.573, 0.614, + 0.806, 0.554, 0.611, 0.800, 0.534, 0.608, 0.794, 0.515, 0.605, 0.788, + 0.495, 0.602, 0.781, 0.474, 0.599, 0.775, 0.454, 0.597, 0.768, 0.433, + 0.594, 0.761, 0.412, 0.592, 0.754, 0.391, 0.589, 0.747, 0.369, 0.587, + 0.740, 0.347, 0.584, 0.733, 0.325, 0.582, 0.725, 0.302, 0.580, 0.718, + 0.279, 0.577, 0.710, 0.255, 0.575, 0.703, 0.230, 0.573, 0.695, 0.204, + 0.357, 0.685, 0.972, 0.372, 0.692, 0.966, 0.387, 0.700, 0.960, 0.401, + 0.707, 0.954, 0.416, 0.714, 0.949, 0.429, 0.722, 0.943, 0.443, 0.729, + 0.938, 0.456, 0.736, 0.933, 0.469, 0.743, 0.929, 0.482, 0.750, 0.924, + 0.494, 0.757, 0.919, 0.507, 0.764, 0.915, 0.519, 0.771, 0.911, 0.530, + 0.777, 0.907, 0.542, 0.784, 0.903, 0.553, 0.790, 0.899, 0.563, 0.796, + 0.895, 0.574, 0.802, 0.891, 0.584, 0.808, 0.887, 0.593, 0.814, 0.883, + 0.603, 0.820, 0.879, 0.611, 0.825, 0.875, 0.620, 0.830, 0.870, 0.627, + 0.835, 0.866, 0.635, 0.839, 0.861, 0.641, 0.843, 0.856, 0.647, 0.847, + 0.850, 0.652, 0.850, 0.844, 0.657, 0.853, 0.838, 0.660, 0.855, 0.831, + 0.663, 0.857, 0.823, 0.666, 0.859, 0.814, 0.667, 0.859, 0.805, 0.668, + 0.860, 0.795, 0.668, 0.860, 0.784, 0.667, 0.859, 0.773, 0.666, 0.858, + 0.760, 0.665, 0.856, 0.747, 0.663, 0.853, 0.733, 0.661, 0.851, 0.718, + 0.658, 0.847, 0.703, 0.655, 0.844, 0.687, 0.652, 0.840, 0.670, 0.649, + 0.835, 0.652, 0.646, 0.830, 0.635, 0.642, 0.825, 0.616, 0.639, 0.820, + 0.598, 0.636, 0.814, 0.579, 0.633, 0.808, 0.559, 0.629, 0.802, 0.539, + 0.626, 0.796, 0.519, 0.623, 0.790, 0.499, 0.620, 0.783, 0.479, 0.617, + 0.776, 0.458, 0.614, 0.769, 0.437, 0.611, 0.762, 0.416, 0.609, 0.755, + 0.394, 0.606, 0.748, 0.372, 0.603, 0.740, 0.350, 0.601, 0.733, 0.328, + 0.598, 0.726, 0.305, 0.596, 0.718, 0.282, 0.593, 0.710, 0.257, 0.591, + 0.703, 0.232, 0.589, 0.695, 0.206, 0.381, 0.684, 0.974, 0.396, 0.692, + 0.968, 0.410, 0.700, 0.962, 0.424, 0.707, 0.957, 0.438, 0.715, 0.951, + 0.451, 0.722, 0.946, 0.464, 0.729, 0.941, 0.477, 0.737, 0.936, 0.490, + 0.744, 0.932, 0.503, 0.751, 0.927, 0.515, 0.758, 0.923, 0.527, 0.765, + 0.919, 0.539, 0.772, 0.915, 0.550, 0.779, 0.911, 0.562, 0.786, 0.907, + 0.573, 0.792, 0.903, 0.584, 0.799, 0.900, 0.594, 0.805, 0.896, 0.604, + 0.811, 0.892, 0.614, 0.817, 0.889, 0.623, 0.823, 0.885, 0.632, 0.829, + 0.881, 0.641, 0.834, 0.877, 0.649, 0.839, 0.873, 0.656, 0.844, 0.868, + 0.663, 0.848, 0.863, 0.669, 0.852, 0.858, 0.674, 0.855, 0.852, 0.679, + 0.858, 0.846, 0.682, 0.861, 0.839, 0.685, 0.863, 0.832, 0.688, 0.864, + 0.823, 0.689, 0.865, 0.814, 0.690, 0.865, 0.804, 0.690, 0.865, 0.794, + 0.689, 0.864, 0.782, 0.688, 0.863, 0.769, 0.686, 0.861, 0.756, 0.684, + 0.858, 0.742, 0.681, 0.855, 0.726, 0.678, 0.852, 0.711, 0.675, 0.848, + 0.694, 0.672, 0.844, 0.677, 0.668, 0.839, 0.659, 0.665, 0.834, 0.641, + 0.662, 0.829, 0.622, 0.658, 0.823, 0.603, 0.655, 0.817, 0.584, 0.651, + 0.811, 0.564, 0.648, 0.805, 0.544, 0.644, 0.798, 0.524, 0.641, 0.791, + 0.503, 0.638, 0.785, 0.483, 0.635, 0.778, 0.462, 0.631, 0.770, 0.440, + 0.628, 0.763, 0.419, 0.625, 0.756, 0.397, 0.623, 0.748, 0.375, 0.620, + 0.741, 0.353, 0.617, 0.733, 0.330, 0.614, 0.726, 0.307, 0.612, 0.718, + 0.284, 0.609, 0.710, 0.260, 0.606, 0.702, 0.235, 0.604, 0.694, 0.208, + 0.404, 0.684, 0.977, 0.418, 0.692, 0.971, 0.432, 0.699, 0.965, 0.445, + 0.707, 0.959, 0.458, 0.715, 0.954, 0.472, 0.722, 0.949, 0.484, 0.730, + 0.944, 0.497, 0.737, 0.939, 0.510, 0.745, 0.935, 0.522, 0.752, 0.931, + 0.534, 0.759, 0.926, 0.546, 0.767, 0.922, 0.558, 0.774, 0.919, 0.569, + 0.781, 0.915, 0.581, 0.788, 0.911, 0.592, 0.794, 0.908, 0.603, 0.801, + 0.904, 0.613, 0.808, 0.901, 0.624, 0.814, 0.897, 0.633, 0.820, 0.894, + 0.643, 0.826, 0.891, 0.652, 0.832, 0.887, 0.661, 0.838, 0.883, 0.669, + 0.843, 0.879, 0.677, 0.848, 0.875, 0.684, 0.853, 0.871, 0.690, 0.857, + 0.866, 0.695, 0.860, 0.860, 0.700, 0.864, 0.855, 0.704, 0.866, 0.848, + 0.707, 0.869, 0.841, 0.709, 0.870, 0.833, 0.711, 0.871, 0.824, 0.711, + 0.871, 0.814, 0.711, 0.871, 0.803, 0.710, 0.870, 0.791, 0.709, 0.868, + 0.778, 0.707, 0.866, 0.765, 0.704, 0.864, 0.750, 0.701, 0.860, 0.735, + 0.698, 0.857, 0.718, 0.695, 0.852, 0.702, 0.691, 0.848, 0.684, 0.688, + 0.843, 0.666, 0.684, 0.837, 0.647, 0.680, 0.832, 0.628, 0.676, 0.826, + 0.609, 0.673, 0.820, 0.589, 0.669, 0.813, 0.569, 0.665, 0.807, 0.549, + 0.662, 0.800, 0.528, 0.658, 0.793, 0.507, 0.655, 0.786, 0.486, 0.651, + 0.779, 0.465, 0.648, 0.771, 0.444, 0.645, 0.764, 0.422, 0.642, 0.756, + 0.400, 0.639, 0.749, 0.378, 0.636, 0.741, 0.356, 0.633, 0.733, 0.333, + 0.630, 0.726, 0.310, 0.627, 0.718, 0.286, 0.624, 0.710, 0.262, 0.621, + 0.702, 0.237, 0.619, 0.694, 0.210, 0.425, 0.683, 0.979, 0.439, 0.691, + 0.973, 0.452, 0.699, 0.967, 0.465, 0.707, 0.962, 0.478, 0.715, 0.956, + 0.491, 0.722, 0.951, 0.503, 0.730, 0.947, 0.516, 0.738, 0.942, 0.528, + 0.745, 0.938, 0.540, 0.753, 0.934, 0.552, 0.760, 0.930, 0.564, 0.768, + 0.926, 0.576, 0.775, 0.922, 0.588, 0.782, 0.919, 0.599, 0.789, 0.915, + 0.610, 0.797, 0.912, 0.621, 0.803, 0.909, 0.632, 0.810, 0.906, 0.642, + 0.817, 0.902, 0.652, 0.823, 0.899, 0.662, 0.830, 0.896, 0.671, 0.836, + 0.893, 0.680, 0.842, 0.890, 0.689, 0.847, 0.886, 0.697, 0.853, 0.882, + 0.704, 0.857, 0.878, 0.710, 0.862, 0.874, 0.716, 0.866, 0.869, 0.721, + 0.869, 0.863, 0.725, 0.872, 0.857, 0.729, 0.874, 0.850, 0.731, 0.876, + 0.842, 0.732, 0.877, 0.833, 0.733, 0.877, 0.823, 0.732, 0.877, 0.812, + 0.731, 0.876, 0.800, 0.729, 0.874, 0.787, 0.727, 0.872, 0.773, 0.724, + 0.869, 0.759, 0.721, 0.865, 0.743, 0.718, 0.861, 0.726, 0.714, 0.857, + 0.709, 0.710, 0.852, 0.691, 0.706, 0.846, 0.672, 0.702, 0.841, 0.653, + 0.698, 0.835, 0.634, 0.694, 0.828, 0.614, 0.690, 0.822, 0.594, 0.686, + 0.815, 0.574, 0.683, 0.808, 0.553, 0.679, 0.801, 0.532, 0.675, 0.794, + 0.511, 0.672, 0.787, 0.490, 0.668, 0.779, 0.468, 0.665, 0.772, 0.446, + 0.661, 0.764, 0.425, 0.658, 0.757, 0.403, 0.654, 0.749, 0.380, 0.651, + 0.741, 0.358, 0.648, 0.733, 0.335, 0.645, 0.725, 0.312, 0.642, 0.717, + 0.288, 0.639, 0.709, 0.264, 0.636, 0.701, 0.238, 0.633, 0.693, 0.212, + 0.445, 0.682, 0.981, 0.458, 0.691, 0.975, 0.471, 0.699, 0.969, 0.484, + 0.707, 0.964, 0.496, 0.715, 0.959, 0.509, 0.722, 0.954, 0.521, 0.730, + 0.949, 0.534, 0.738, 0.945, 0.546, 0.746, 0.941, 0.558, 0.753, 0.937, + 0.570, 0.761, 0.933, 0.582, 0.769, 0.929, 0.593, 0.776, 0.926, 0.605, + 0.784, 0.922, 0.616, 0.791, 0.919, 0.628, 0.798, 0.916, 0.639, 0.806, + 0.913, 0.649, 0.813, 0.910, 0.660, 0.820, 0.907, 0.670, 0.826, 0.904, + 0.680, 0.833, 0.902, 0.690, 0.839, 0.899, 0.699, 0.846, 0.896, 0.708, + 0.851, 0.893, 0.716, 0.857, 0.889, 0.724, 0.862, 0.885, 0.731, 0.867, + 0.881, 0.737, 0.871, 0.877, 0.742, 0.875, 0.872, 0.746, 0.878, 0.866, + 0.750, 0.880, 0.859, 0.752, 0.882, 0.851, 0.753, 0.883, 0.843, 0.754, + 0.883, 0.833, 0.753, 0.883, 0.822, 0.752, 0.882, 0.810, 0.750, 0.880, + 0.797, 0.747, 0.877, 0.782, 0.744, 0.874, 0.767, 0.740, 0.870, 0.751, + 0.737, 0.866, 0.734, 0.733, 0.861, 0.716, 0.729, 0.855, 0.697, 0.724, + 0.850, 0.678, 0.720, 0.844, 0.659, 0.716, 0.837, 0.639, 0.712, 0.831, + 0.619, 0.708, 0.824, 0.598, 0.704, 0.817, 0.578, 0.699, 0.810, 0.557, + 0.696, 0.803, 0.535, 0.692, 0.795, 0.514, 0.688, 0.788, 0.493, 0.684, + 0.780, 0.471, 0.680, 0.772, 0.449, 0.677, 0.765, 0.427, 0.673, 0.757, + 0.405, 0.670, 0.749, 0.382, 0.666, 0.741, 0.360, 0.663, 0.733, 0.337, + 0.660, 0.725, 0.313, 0.657, 0.716, 0.289, 0.653, 0.708, 0.265, 0.650, + 0.700, 0.240, 0.647, 0.692, 0.213, 0.464, 0.681, 0.982, 0.476, 0.690, + 0.977, 0.489, 0.698, 0.971, 0.501, 0.706, 0.966, 0.514, 0.714, 0.961, + 0.526, 0.722, 0.956, 0.538, 0.730, 0.952, 0.550, 0.738, 0.947, 0.562, + 0.746, 0.943, 0.574, 0.754, 0.939, 0.586, 0.762, 0.936, 0.598, 0.769, + 0.932, 0.610, 0.777, 0.929, 0.621, 0.785, 0.926, 0.633, 0.792, 0.923, + 0.644, 0.800, 0.920, 0.655, 0.807, 0.917, 0.666, 0.815, 0.915, 0.677, + 0.822, 0.912, 0.688, 0.829, 0.909, 0.698, 0.836, 0.907, 0.708, 0.843, + 0.904, 0.717, 0.849, 0.902, 0.727, 0.855, 0.899, 0.735, 0.861, 0.896, + 0.743, 0.867, 0.893, 0.750, 0.872, 0.889, 0.757, 0.877, 0.885, 0.762, + 0.881, 0.880, 0.767, 0.884, 0.875, 0.770, 0.887, 0.868, 0.773, 0.888, + 0.861, 0.774, 0.889, 0.852, 0.774, 0.890, 0.842, 0.774, 0.889, 0.831, + 0.772, 0.888, 0.819, 0.770, 0.885, 0.806, 0.767, 0.883, 0.791, 0.763, + 0.879, 0.775, 0.759, 0.875, 0.759, 0.755, 0.870, 0.741, 0.751, 0.865, + 0.723, 0.747, 0.859, 0.704, 0.742, 0.853, 0.684, 0.738, 0.847, 0.664, + 0.733, 0.840, 0.644, 0.729, 0.833, 0.623, 0.724, 0.826, 0.603, 0.720, + 0.819, 0.581, 0.716, 0.811, 0.560, 0.712, 0.804, 0.539, 0.708, 0.796, + 0.517, 0.704, 0.788, 0.495, 0.700, 0.780, 0.473, 0.696, 0.772, 0.451, + 0.692, 0.764, 0.429, 0.688, 0.756, 0.407, 0.685, 0.748, 0.384, 0.681, + 0.740, 0.361, 0.678, 0.732, 0.338, 0.674, 0.724, 0.315, 0.671, 0.715, + 0.291, 0.667, 0.707, 0.266, 0.664, 0.699, 0.241, 0.661, 0.691, 0.214, + 0.481, 0.680, 0.984, 0.494, 0.689, 0.978, 0.506, 0.697, 0.973, 0.518, + 0.705, 0.968, 0.530, 0.713, 0.963, 0.542, 0.722, 0.958, 0.554, 0.730, + 0.954, 0.566, 0.738, 0.950, 0.578, 0.746, 0.946, 0.590, 0.754, 0.942, + 0.602, 0.762, 0.939, 0.614, 0.770, 0.935, 0.626, 0.778, 0.932, 0.637, + 0.786, 0.929, 0.649, 0.794, 0.926, 0.660, 0.801, 0.924, 0.671, 0.809, + 0.921, 0.683, 0.817, 0.919, 0.694, 0.824, 0.916, 0.704, 0.832, 0.914, + 0.715, 0.839, 0.912, 0.725, 0.846, 0.910, 0.735, 0.853, 0.908, 0.744, + 0.859, 0.905, 0.753, 0.866, 0.903, 0.762, 0.872, 0.900, 0.770, 0.877, + 0.897, 0.776, 0.882, 0.893, 0.782, 0.886, 0.889, 0.787, 0.890, 0.884, + 0.791, 0.893, 0.878, 0.794, 0.895, 0.871, 0.795, 0.896, 0.862, 0.795, + 0.896, 0.852, 0.794, 0.895, 0.841, 0.792, 0.894, 0.829, 0.789, 0.891, + 0.815, 0.786, 0.888, 0.800, 0.782, 0.884, 0.783, 0.778, 0.879, 0.766, + 0.774, 0.874, 0.748, 0.769, 0.868, 0.729, 0.764, 0.862, 0.710, 0.760, + 0.856, 0.690, 0.755, 0.849, 0.669, 0.750, 0.842, 0.649, 0.745, 0.835, + 0.628, 0.741, 0.827, 0.606, 0.736, 0.820, 0.585, 0.732, 0.812, 0.563, + 0.728, 0.804, 0.542, 0.723, 0.796, 0.520, 0.719, 0.788, 0.498, 0.715, + 0.780, 0.475, 0.711, 0.772, 0.453, 0.707, 0.764, 0.431, 0.703, 0.756, + 0.408, 0.699, 0.748, 0.386, 0.696, 0.739, 0.363, 0.692, 0.731, 0.339, + 0.688, 0.723, 0.316, 0.685, 0.714, 0.292, 0.681, 0.706, 0.267, 0.678, + 0.697, 0.242, 0.674, 0.689, 0.215, 0.498, 0.679, 0.986, 0.510, 0.687, + 0.980, 0.522, 0.696, 0.975, 0.534, 0.704, 0.970, 0.546, 0.712, 0.965, + 0.558, 0.721, 0.961, 0.570, 0.729, 0.956, 0.581, 0.737, 0.952, 0.593, + 0.746, 0.948, 0.605, 0.754, 0.945, 0.617, 0.762, 0.941, 0.629, 0.770, + 0.938, 0.640, 0.778, 0.935, 0.652, 0.786, 0.932, 0.664, 0.794, 0.930, + 0.675, 0.802, 0.927, 0.687, 0.810, 0.925, 0.698, 0.818, 0.923, 0.709, + 0.826, 0.921, 0.720, 0.834, 0.919, 0.731, 0.841, 0.917, 0.742, 0.849, + 0.915, 0.752, 0.856, 0.913, 0.762, 0.863, 0.911, 0.771, 0.870, 0.909, + 0.780, 0.876, 0.907, 0.788, 0.882, 0.904, 0.796, 0.887, 0.901, 0.802, + 0.892, 0.897, 0.807, 0.896, 0.893, 0.811, 0.899, 0.887, 0.814, 0.902, + 0.880, 0.815, 0.903, 0.872, 0.815, 0.903, 0.862, 0.814, 0.902, 0.851, + 0.812, 0.900, 0.838, 0.809, 0.897, 0.824, 0.805, 0.893, 0.808, 0.801, + 0.889, 0.791, 0.796, 0.884, 0.774, 0.791, 0.878, 0.755, 0.786, 0.872, + 0.735, 0.781, 0.865, 0.715, 0.776, 0.858, 0.695, 0.771, 0.851, 0.674, + 0.767, 0.844, 0.653, 0.762, 0.836, 0.631, 0.757, 0.829, 0.610, 0.752, + 0.821, 0.588, 0.748, 0.813, 0.566, 0.743, 0.805, 0.544, 0.739, 0.796, + 0.522, 0.734, 0.788, 0.500, 0.730, 0.780, 0.477, 0.726, 0.772, 0.455, + 0.722, 0.763, 0.432, 0.718, 0.755, 0.410, 0.714, 0.746, 0.387, 0.710, + 0.738, 0.364, 0.706, 0.730, 0.340, 0.702, 0.721, 0.317, 0.698, 0.713, + 0.293, 0.694, 0.704, 0.268, 0.691, 0.696, 0.243, 0.687, 0.687, 0.216, + 0.513, 0.677, 0.987, 0.525, 0.686, 0.982, 0.537, 0.694, 0.977, 0.549, + 0.703, 0.972, 0.561, 0.711, 0.967, 0.572, 0.720, 0.962, 0.584, 0.728, + 0.958, 0.596, 0.737, 0.954, 0.608, 0.745, 0.951, 0.619, 0.753, 0.947, + 0.631, 0.762, 0.944, 0.643, 0.770, 0.941, 0.655, 0.778, 0.938, 0.666, + 0.787, 0.935, 0.678, 0.795, 0.933, 0.689, 0.803, 0.930, 0.701, 0.811, + 0.928, 0.713, 0.820, 0.926, 0.724, 0.828, 0.925, 0.735, 0.836, 0.923, + 0.746, 0.844, 0.921, 0.757, 0.852, 0.920, 0.768, 0.859, 0.918, 0.778, + 0.867, 0.917, 0.788, 0.874, 0.915, 0.797, 0.881, 0.913, 0.806, 0.887, + 0.911, 0.814, 0.893, 0.909, 0.821, 0.898, 0.906, 0.827, 0.902, 0.902, + 0.831, 0.906, 0.897, 0.834, 0.908, 0.890, 0.836, 0.910, 0.882, 0.836, + 0.910, 0.873, 0.834, 0.909, 0.861, 0.832, 0.906, 0.848, 0.828, 0.903, + 0.833, 0.824, 0.899, 0.817, 0.819, 0.894, 0.799, 0.814, 0.888, 0.781, + 0.809, 0.882, 0.761, 0.804, 0.875, 0.741, 0.798, 0.868, 0.720, 0.793, + 0.861, 0.699, 0.788, 0.853, 0.678, 0.783, 0.845, 0.656, 0.777, 0.837, + 0.635, 0.772, 0.829, 0.613, 0.768, 0.821, 0.590, 0.763, 0.813, 0.568, + 0.758, 0.804, 0.546, 0.753, 0.796, 0.524, 0.749, 0.788, 0.501, 0.744, + 0.779, 0.479, 0.740, 0.771, 0.456, 0.736, 0.762, 0.433, 0.731, 0.754, + 0.411, 0.727, 0.745, 0.388, 0.723, 0.736, 0.365, 0.719, 0.728, 0.341, + 0.715, 0.719, 0.317, 0.711, 0.711, 0.293, 0.707, 0.702, 0.268, 0.704, + 0.694, 0.243, 0.700, 0.685, 0.216, 0.528, 0.675, 0.989, 0.540, 0.684, + 0.983, 0.551, 0.693, 0.978, 0.563, 0.701, 0.973, 0.575, 0.710, 0.969, + 0.586, 0.718, 0.964, 0.598, 0.727, 0.960, 0.610, 0.736, 0.956, 0.621, + 0.744, 0.953, 0.633, 0.753, 0.949, 0.645, 0.761, 0.946, 0.656, 0.770, + 0.943, 0.668, 0.778, 0.940, 0.680, 0.787, 0.938, 0.691, 0.795, 0.936, + 0.703, 0.804, 0.933, 0.715, 0.812, 0.932, 0.726, 0.821, 0.930, 0.738, + 0.829, 0.928, 0.749, 0.837, 0.927, 0.761, 0.846, 0.926, 0.772, 0.854, + 0.924, 0.783, 0.862, 0.923, 0.794, 0.870, 0.922, 0.804, 0.877, 0.921, + 0.814, 0.885, 0.920, 0.824, 0.892, 0.918, 0.832, 0.898, 0.917, 0.840, + 0.904, 0.914, 0.846, 0.909, 0.911, 0.851, 0.913, 0.906, 0.855, 0.915, + 0.901, 0.856, 0.917, 0.893, 0.856, 0.917, 0.883, 0.854, 0.915, 0.871, + 0.851, 0.913, 0.858, 0.847, 0.909, 0.842, 0.842, 0.904, 0.825, 0.837, + 0.898, 0.806, 0.831, 0.892, 0.787, 0.826, 0.885, 0.767, 0.820, 0.878, + 0.746, 0.814, 0.870, 0.725, 0.809, 0.862, 0.703, 0.803, 0.854, 0.681, + 0.798, 0.846, 0.659, 0.793, 0.838, 0.637, 0.788, 0.829, 0.615, 0.782, + 0.821, 0.592, 0.777, 0.812, 0.570, 0.773, 0.804, 0.548, 0.768, 0.795, + 0.525, 0.763, 0.787, 0.502, 0.758, 0.778, 0.480, 0.754, 0.769, 0.457, + 0.749, 0.761, 0.434, 0.745, 0.752, 0.411, 0.741, 0.743, 0.388, 0.737, + 0.735, 0.365, 0.732, 0.726, 0.342, 0.728, 0.717, 0.318, 0.724, 0.709, + 0.293, 0.720, 0.700, 0.269, 0.716, 0.691, 0.243, 0.712, 0.683, 0.216, + 0.542, 0.673, 0.990, 0.554, 0.682, 0.985, 0.565, 0.691, 0.980, 0.577, + 0.700, 0.975, 0.588, 0.708, 0.970, 0.600, 0.717, 0.966, 0.611, 0.726, + 0.962, 0.623, 0.734, 0.958, 0.634, 0.743, 0.955, 0.646, 0.752, 0.951, + 0.657, 0.760, 0.948, 0.669, 0.769, 0.945, 0.681, 0.778, 0.943, 0.692, + 0.786, 0.940, 0.704, 0.795, 0.938, 0.716, 0.804, 0.936, 0.728, 0.812, + 0.934, 0.739, 0.821, 0.933, 0.751, 0.830, 0.932, 0.763, 0.838, 0.930, + 0.774, 0.847, 0.929, 0.786, 0.856, 0.929, 0.797, 0.864, 0.928, 0.809, + 0.873, 0.927, 0.819, 0.881, 0.927, 0.830, 0.889, 0.926, 0.840, 0.896, + 0.925, 0.850, 0.903, 0.924, 0.858, 0.910, 0.922, 0.865, 0.915, 0.920, + 0.871, 0.920, 0.916, 0.875, 0.923, 0.911, 0.876, 0.924, 0.903, 0.876, + 0.924, 0.894, 0.873, 0.922, 0.882, 0.870, 0.919, 0.867, 0.865, 0.914, + 0.851, 0.860, 0.909, 0.832, 0.854, 0.902, 0.813, 0.848, 0.895, 0.793, + 0.842, 0.888, 0.772, 0.836, 0.880, 0.750, 0.830, 0.872, 0.729, 0.824, + 0.864, 0.707, 0.819, 0.855, 0.684, 0.813, 0.847, 0.662, 0.808, 0.838, + 0.639, 0.802, 0.829, 0.617, 0.797, 0.820, 0.594, 0.792, 0.812, 0.571, + 0.787, 0.803, 0.549, 0.782, 0.794, 0.526, 0.777, 0.785, 0.503, 0.772, + 0.776, 0.480, 0.767, 0.768, 0.458, 0.763, 0.759, 0.435, 0.758, 0.750, + 0.412, 0.754, 0.741, 0.388, 0.749, 0.732, 0.365, 0.745, 0.724, 0.342, + 0.741, 0.715, 0.318, 0.737, 0.706, 0.293, 0.732, 0.697, 0.269, 0.728, + 0.689, 0.243, 0.724, 0.680, 0.216, 0.556, 0.671, 0.992, 0.567, 0.680, + 0.986, 0.578, 0.689, 0.981, 0.590, 0.697, 0.976, 0.601, 0.706, 0.972, + 0.612, 0.715, 0.968, 0.624, 0.724, 0.964, 0.635, 0.733, 0.960, 0.646, + 0.741, 0.956, 0.658, 0.750, 0.953, 0.670, 0.759, 0.950, 0.681, 0.768, + 0.947, 0.693, 0.777, 0.945, 0.704, 0.786, 0.943, 0.716, 0.794, 0.941, + 0.728, 0.803, 0.939, 0.740, 0.812, 0.937, 0.752, 0.821, 0.936, 0.763, + 0.830, 0.935, 0.775, 0.839, 0.934, 0.787, 0.848, 0.933, 0.799, 0.857, + 0.932, 0.811, 0.866, 0.932, 0.822, 0.875, 0.932, 0.834, 0.883, 0.932, + 0.845, 0.892, 0.931, 0.856, 0.900, 0.931, 0.866, 0.908, 0.931, 0.876, + 0.915, 0.930, 0.884, 0.922, 0.929, 0.890, 0.927, 0.926, 0.895, 0.930, + 0.921, 0.896, 0.932, 0.914, 0.896, 0.932, 0.905, 0.893, 0.929, 0.892, + 0.888, 0.925, 0.876, 0.883, 0.920, 0.859, 0.877, 0.913, 0.840, 0.871, + 0.906, 0.819, 0.864, 0.898, 0.798, 0.858, 0.890, 0.776, 0.852, 0.882, + 0.754, 0.845, 0.873, 0.732, 0.839, 0.864, 0.709, 0.833, 0.855, 0.686, + 0.828, 0.846, 0.664, 0.822, 0.837, 0.641, 0.816, 0.828, 0.618, 0.811, + 0.819, 0.595, 0.806, 0.810, 0.572, 0.800, 0.801, 0.549, 0.795, 0.792, + 0.526, 0.790, 0.783, 0.504, 0.785, 0.774, 0.481, 0.781, 0.765, 0.458, + 0.776, 0.756, 0.435, 0.771, 0.748, 0.412, 0.766, 0.739, 0.388, 0.762, + 0.730, 0.365, 0.757, 0.721, 0.341, 0.753, 0.712, 0.318, 0.749, 0.703, + 0.293, 0.744, 0.695, 0.268, 0.740, 0.686, 0.243, 0.736, 0.677, 0.216, + 0.569, 0.668, 0.993, 0.580, 0.677, 0.987, 0.591, 0.686, 0.982, 0.602, + 0.695, 0.978, 0.613, 0.704, 0.973, 0.624, 0.713, 0.969, 0.635, 0.722, + 0.965, 0.647, 0.731, 0.961, 0.658, 0.740, 0.958, 0.670, 0.748, 0.955, + 0.681, 0.757, 0.952, 0.693, 0.766, 0.949, 0.704, 0.775, 0.947, 0.716, + 0.784, 0.945, 0.728, 0.793, 0.943, 0.739, 0.802, 0.941, 0.751, 0.812, + 0.939, 0.763, 0.821, 0.938, 0.775, 0.830, 0.937, 0.787, 0.839, 0.936, + 0.799, 0.848, 0.936, 0.811, 0.858, 0.936, 0.823, 0.867, 0.935, 0.835, + 0.876, 0.936, 0.847, 0.886, 0.936, 0.859, 0.895, 0.936, 0.870, 0.904, + 0.937, 0.882, 0.912, 0.937, 0.892, 0.920, 0.937, 0.901, 0.928, 0.937, + 0.909, 0.934, 0.936, 0.914, 0.938, 0.932, 0.917, 0.940, 0.926, 0.915, + 0.940, 0.916, 0.912, 0.936, 0.902, 0.906, 0.931, 0.885, 0.900, 0.925, + 0.866, 0.893, 0.917, 0.846, 0.887, 0.909, 0.824, 0.880, 0.900, 0.802, + 0.873, 0.891, 0.780, 0.867, 0.882, 0.757, 0.860, 0.873, 0.734, 0.854, + 0.864, 0.711, 0.848, 0.855, 0.688, 0.842, 0.845, 0.665, 0.836, 0.836, + 0.642, 0.830, 0.827, 0.619, 0.824, 0.818, 0.596, 0.819, 0.808, 0.573, + 0.814, 0.799, 0.549, 0.808, 0.790, 0.527, 0.803, 0.781, 0.504, 0.798, + 0.772, 0.481, 0.793, 0.763, 0.458, 0.788, 0.754, 0.434, 0.783, 0.745, + 0.411, 0.779, 0.736, 0.388, 0.774, 0.727, 0.365, 0.769, 0.718, 0.341, + 0.765, 0.709, 0.317, 0.760, 0.700, 0.293, 0.756, 0.691, 0.268, 0.751, + 0.683, 0.242, 0.747, 0.674, 0.215, 0.581, 0.665, 0.994, 0.592, 0.674, + 0.989, 0.603, 0.683, 0.984, 0.614, 0.692, 0.979, 0.625, 0.701, 0.974, + 0.636, 0.710, 0.970, 0.647, 0.719, 0.966, 0.658, 0.728, 0.963, 0.669, + 0.737, 0.959, 0.681, 0.746, 0.956, 0.692, 0.755, 0.953, 0.703, 0.765, + 0.951, 0.715, 0.774, 0.948, 0.727, 0.783, 0.946, 0.738, 0.792, 0.944, + 0.750, 0.801, 0.943, 0.762, 0.810, 0.941, 0.774, 0.820, 0.940, 0.786, + 0.829, 0.939, 0.798, 0.839, 0.939, 0.810, 0.848, 0.938, 0.822, 0.858, + 0.938, 0.834, 0.867, 0.939, 0.847, 0.877, 0.939, 0.859, 0.887, 0.940, + 0.871, 0.897, 0.940, 0.883, 0.906, 0.942, 0.896, 0.916, 0.943, 0.907, + 0.925, 0.944, 0.918, 0.933, 0.945, 0.927, 0.941, 0.945, 0.934, 0.946, + 0.943, 0.937, 0.949, 0.937, 0.935, 0.948, 0.927, 0.930, 0.943, 0.912, + 0.924, 0.937, 0.893, 0.916, 0.929, 0.872, 0.909, 0.920, 0.850, 0.902, + 0.911, 0.828, 0.895, 0.901, 0.805, 0.888, 0.892, 0.782, 0.881, 0.882, + 0.759, 0.874, 0.872, 0.735, 0.868, 0.863, 0.712, 0.861, 0.853, 0.689, + 0.855, 0.844, 0.665, 0.849, 0.834, 0.642, 0.843, 0.825, 0.619, 0.838, + 0.815, 0.596, 0.832, 0.806, 0.572, 0.826, 0.797, 0.549, 0.821, 0.787, + 0.526, 0.816, 0.778, 0.503, 0.811, 0.769, 0.480, 0.805, 0.760, 0.457, + 0.800, 0.751, 0.434, 0.795, 0.742, 0.411, 0.791, 0.733, 0.387, 0.786, + 0.724, 0.364, 0.781, 0.715, 0.340, 0.776, 0.706, 0.316, 0.772, 0.697, + 0.292, 0.767, 0.688, 0.267, 0.762, 0.679, 0.241, 0.758, 0.670, 0.215, + 0.593, 0.662, 0.995, 0.603, 0.671, 0.990, 0.614, 0.680, 0.985, 0.625, + 0.689, 0.980, 0.636, 0.699, 0.975, 0.647, 0.708, 0.971, 0.658, 0.717, + 0.967, 0.669, 0.726, 0.964, 0.680, 0.735, 0.960, 0.691, 0.744, 0.957, + 0.702, 0.753, 0.955, 0.714, 0.762, 0.952, 0.725, 0.771, 0.950, 0.737, + 0.781, 0.948, 0.748, 0.790, 0.946, 0.760, 0.799, 0.944, 0.772, 0.809, + 0.943, 0.784, 0.818, 0.942, 0.796, 0.828, 0.941, 0.808, 0.837, 0.941, + 0.820, 0.847, 0.940, 0.832, 0.857, 0.941, 0.844, 0.867, 0.941, 0.857, + 0.877, 0.942, 0.869, 0.887, 0.943, 0.882, 0.897, 0.944, 0.895, 0.908, + 0.945, 0.908, 0.918, 0.947, 0.920, 0.928, 0.949, 0.933, 0.938, 0.951, + 0.944, 0.947, 0.953, 0.953, 0.955, 0.954, 0.957, 0.958, 0.950, 0.954, + 0.956, 0.938, 0.948, 0.949, 0.920, 0.940, 0.941, 0.899, 0.932, 0.931, + 0.877, 0.924, 0.921, 0.854, 0.916, 0.911, 0.830, 0.909, 0.901, 0.807, + 0.901, 0.891, 0.783, 0.894, 0.881, 0.759, 0.887, 0.871, 0.736, 0.881, + 0.861, 0.712, 0.874, 0.851, 0.688, 0.868, 0.841, 0.665, 0.862, 0.832, + 0.642, 0.856, 0.822, 0.618, 0.850, 0.812, 0.595, 0.844, 0.803, 0.572, + 0.839, 0.793, 0.549, 0.833, 0.784, 0.525, 0.828, 0.775, 0.502, 0.822, + 0.766, 0.479, 0.817, 0.756, 0.456, 0.812, 0.747, 0.433, 0.807, 0.738, + 0.410, 0.802, 0.729, 0.387, 0.797, 0.720, 0.363, 0.792, 0.711, 0.339, + 0.787, 0.702, 0.315, 0.782, 0.693, 0.291, 0.778, 0.684, 0.266, 0.773, + 0.675, 0.240, 0.768, 0.666, 0.214, 0.604, 0.659, 0.996, 0.614, 0.668, + 0.990, 0.625, 0.677, 0.985, 0.636, 0.686, 0.981, 0.646, 0.695, 0.976, + 0.657, 0.704, 0.972, 0.668, 0.714, 0.968, 0.679, 0.723, 0.965, 0.690, + 0.732, 0.961, 0.701, 0.741, 0.958, 0.712, 0.750, 0.956, 0.723, 0.759, + 0.953, 0.735, 0.769, 0.951, 0.746, 0.778, 0.949, 0.758, 0.787, 0.947, + 0.769, 0.797, 0.945, 0.781, 0.806, 0.944, 0.793, 0.816, 0.943, 0.805, + 0.826, 0.943, 0.817, 0.836, 0.942, 0.829, 0.845, 0.942, 0.841, 0.855, + 0.942, 0.853, 0.866, 0.943, 0.866, 0.876, 0.943, 0.879, 0.886, 0.945, + 0.892, 0.897, 0.946, 0.905, 0.907, 0.948, 0.918, 0.918, 0.950, 0.931, + 0.930, 0.953, 0.945, 0.941, 0.956, 0.958, 0.952, 0.960, 0.971, 0.963, + 0.963, 0.978, 0.968, 0.963, 0.972, 0.963, 0.948, 0.963, 0.954, 0.926, + 0.954, 0.943, 0.903, 0.945, 0.931, 0.879, 0.937, 0.921, 0.855, 0.929, + 0.910, 0.831, 0.921, 0.899, 0.807, 0.914, 0.889, 0.783, 0.907, 0.878, + 0.759, 0.900, 0.868, 0.735, 0.893, 0.858, 0.711, 0.887, 0.848, 0.688, + 0.880, 0.838, 0.664, 0.874, 0.828, 0.641, 0.868, 0.818, 0.617, 0.862, + 0.809, 0.594, 0.856, 0.799, 0.571, 0.850, 0.790, 0.547, 0.845, 0.780, + 0.524, 0.839, 0.771, 0.501, 0.834, 0.762, 0.478, 0.828, 0.752, 0.455, + 0.823, 0.743, 0.432, 0.818, 0.734, 0.409, 0.813, 0.725, 0.385, 0.808, + 0.716, 0.362, 0.803, 0.707, 0.338, 0.798, 0.698, 0.314, 0.793, 0.689, + 0.290, 0.788, 0.680, 0.265, 0.783, 0.671, 0.239, 0.778, 0.662, 0.213, + 0.615, 0.655, 0.996, 0.625, 0.664, 0.991, 0.635, 0.673, 0.986, 0.646, + 0.683, 0.982, 0.656, 0.692, 0.977, 0.667, 0.701, 0.973, 0.678, 0.710, + 0.969, 0.688, 0.719, 0.966, 0.699, 0.729, 0.962, 0.710, 0.738, 0.959, + 0.721, 0.747, 0.956, 0.732, 0.756, 0.954, 0.744, 0.766, 0.952, 0.755, + 0.775, 0.950, 0.766, 0.784, 0.948, 0.778, 0.794, 0.946, 0.789, 0.804, + 0.945, 0.801, 0.813, 0.944, 0.813, 0.823, 0.943, 0.825, 0.833, 0.943, + 0.837, 0.843, 0.943, 0.849, 0.853, 0.943, 0.861, 0.863, 0.944, 0.874, + 0.873, 0.944, 0.886, 0.884, 0.946, 0.899, 0.895, 0.947, 0.912, 0.906, + 0.949, 0.926, 0.917, 0.952, 0.939, 0.928, 0.955, 0.953, 0.940, 0.958, + 0.967, 0.953, 0.963, 0.982, 0.966, 0.969, 0.994, 0.976, 0.972, 0.986, + 0.966, 0.952, 0.976, 0.953, 0.928, 0.966, 0.941, 0.903, 0.957, 0.929, + 0.878, 0.949, 0.918, 0.854, 0.941, 0.906, 0.830, 0.933, 0.896, 0.806, + 0.926, 0.885, 0.782, 0.918, 0.874, 0.758, 0.911, 0.864, 0.734, 0.905, + 0.854, 0.710, 0.898, 0.844, 0.686, 0.892, 0.834, 0.663, 0.885, 0.824, + 0.639, 0.879, 0.814, 0.616, 0.873, 0.804, 0.592, 0.867, 0.795, 0.569, + 0.861, 0.785, 0.546, 0.856, 0.776, 0.523, 0.850, 0.766, 0.500, 0.845, + 0.757, 0.477, 0.839, 0.748, 0.454, 0.834, 0.739, 0.430, 0.829, 0.729, + 0.407, 0.823, 0.720, 0.384, 0.818, 0.711, 0.361, 0.813, 0.702, 0.337, + 0.808, 0.693, 0.313, 0.803, 0.684, 0.289, 0.798, 0.675, 0.264, 0.793, + 0.666, 0.238, 0.788, 0.657, 0.211, 0.625, 0.651, 0.997, 0.635, 0.660, + 0.992, 0.645, 0.669, 0.987, 0.656, 0.679, 0.982, 0.666, 0.688, 0.978, + 0.676, 0.697, 0.974, 0.687, 0.706, 0.970, 0.698, 0.716, 0.966, 0.708, + 0.725, 0.963, 0.719, 0.734, 0.960, 0.730, 0.743, 0.957, 0.741, 0.753, + 0.954, 0.752, 0.762, 0.952, 0.763, 0.771, 0.950, 0.774, 0.781, 0.948, + 0.786, 0.790, 0.947, 0.797, 0.800, 0.945, 0.809, 0.810, 0.945, 0.820, + 0.819, 0.944, 0.832, 0.829, 0.943, 0.844, 0.839, 0.943, 0.856, 0.849, + 0.943, 0.868, 0.860, 0.944, 0.880, 0.870, 0.945, 0.893, 0.880, 0.946, + 0.905, 0.891, 0.947, 0.918, 0.902, 0.949, 0.931, 0.913, 0.951, 0.944, + 0.924, 0.954, 0.957, 0.936, 0.957, 0.971, 0.947, 0.961, 0.983, 0.958, + 0.964, 0.991, 0.963, 0.962, 0.990, 0.957, 0.946, 0.983, 0.946, 0.924, + 0.975, 0.935, 0.900, 0.967, 0.923, 0.876, 0.959, 0.912, 0.851, 0.951, + 0.901, 0.827, 0.943, 0.890, 0.803, 0.936, 0.880, 0.779, 0.929, 0.869, + 0.755, 0.922, 0.859, 0.732, 0.915, 0.849, 0.708, 0.909, 0.839, 0.684, + 0.902, 0.829, 0.661, 0.896, 0.819, 0.637, 0.890, 0.809, 0.614, 0.884, + 0.800, 0.591, 0.878, 0.790, 0.567, 0.872, 0.780, 0.544, 0.866, 0.771, + 0.521, 0.861, 0.762, 0.498, 0.855, 0.752, 0.475, 0.850, 0.743, 0.452, + 0.844, 0.734, 0.429, 0.839, 0.725, 0.406, 0.834, 0.715, 0.382, 0.828, + 0.706, 0.359, 0.823, 0.697, 0.335, 0.818, 0.688, 0.311, 0.813, 0.679, + 0.287, 0.808, 0.670, 0.262, 0.803, 0.662, 0.236, 0.798, 0.653, 0.210, + 0.635, 0.646, 0.998, 0.645, 0.656, 0.992, 0.655, 0.665, 0.987, 0.665, + 0.674, 0.983, 0.675, 0.684, 0.978, 0.685, 0.693, 0.974, 0.696, 0.702, + 0.970, 0.706, 0.711, 0.966, 0.717, 0.721, 0.963, 0.727, 0.730, 0.960, + 0.738, 0.739, 0.957, 0.749, 0.748, 0.955, 0.760, 0.758, 0.952, 0.771, + 0.767, 0.950, 0.782, 0.777, 0.948, 0.793, 0.786, 0.947, 0.804, 0.796, + 0.946, 0.816, 0.805, 0.945, 0.827, 0.815, 0.944, 0.839, 0.825, 0.943, + 0.850, 0.835, 0.943, 0.862, 0.845, 0.943, 0.874, 0.855, 0.943, 0.886, + 0.865, 0.944, 0.898, 0.875, 0.945, 0.910, 0.886, 0.946, 0.923, 0.896, + 0.948, 0.935, 0.907, 0.949, 0.947, 0.917, 0.951, 0.959, 0.927, 0.953, + 0.970, 0.937, 0.955, 0.980, 0.944, 0.955, 0.987, 0.946, 0.949, 0.989, + 0.942, 0.936, 0.985, 0.935, 0.916, 0.980, 0.925, 0.894, 0.973, 0.915, + 0.871, 0.966, 0.904, 0.847, 0.959, 0.894, 0.824, 0.952, 0.883, 0.800, + 0.945, 0.873, 0.776, 0.938, 0.863, 0.752, 0.932, 0.853, 0.729, 0.925, + 0.843, 0.705, 0.919, 0.833, 0.682, 0.912, 0.823, 0.658, 0.906, 0.813, + 0.635, 0.900, 0.803, 0.611, 0.894, 0.794, 0.588, 0.888, 0.784, 0.565, + 0.882, 0.775, 0.542, 0.876, 0.765, 0.519, 0.871, 0.756, 0.496, 0.865, + 0.747, 0.473, 0.859, 0.738, 0.450, 0.854, 0.728, 0.427, 0.848, 0.719, + 0.404, 0.843, 0.710, 0.380, 0.838, 0.701, 0.357, 0.833, 0.692, 0.333, + 0.827, 0.683, 0.310, 0.822, 0.674, 0.285, 0.817, 0.665, 0.260, 0.812, + 0.656, 0.235, 0.807, 0.648, 0.208, 0.644, 0.642, 0.998, 0.654, 0.651, + 0.993, 0.664, 0.660, 0.988, 0.674, 0.670, 0.983, 0.684, 0.679, 0.978, + 0.694, 0.688, 0.974, 0.704, 0.697, 0.970, 0.715, 0.707, 0.967, 0.725, + 0.716, 0.963, 0.735, 0.725, 0.960, 0.746, 0.735, 0.957, 0.757, 0.744, + 0.955, 0.767, 0.753, 0.952, 0.778, 0.763, 0.950, 0.789, 0.772, 0.948, + 0.800, 0.781, 0.947, 0.811, 0.791, 0.945, 0.822, 0.801, 0.944, 0.833, + 0.810, 0.943, 0.845, 0.820, 0.943, 0.856, 0.830, 0.942, 0.868, 0.839, + 0.942, 0.879, 0.849, 0.942, 0.891, 0.859, 0.943, 0.902, 0.869, 0.943, + 0.914, 0.879, 0.944, 0.926, 0.889, 0.945, 0.937, 0.899, 0.946, 0.949, + 0.908, 0.947, 0.959, 0.917, 0.948, 0.969, 0.924, 0.947, 0.978, 0.929, + 0.944, 0.984, 0.930, 0.937, 0.986, 0.927, 0.924, 0.986, 0.921, 0.907, + 0.982, 0.913, 0.887, 0.978, 0.904, 0.865, 0.972, 0.895, 0.842, 0.966, + 0.885, 0.819, 0.959, 0.875, 0.795, 0.953, 0.865, 0.772, 0.946, 0.855, + 0.749, 0.940, 0.846, 0.725, 0.934, 0.836, 0.702, 0.927, 0.826, 0.678, + 0.921, 0.816, 0.655, 0.915, 0.807, 0.632, 0.909, 0.797, 0.609, 0.903, + 0.788, 0.586, 0.897, 0.778, 0.562, 0.891, 0.769, 0.539, 0.886, 0.759, + 0.516, 0.880, 0.750, 0.493, 0.874, 0.741, 0.471, 0.869, 0.732, 0.448, + 0.863, 0.723, 0.425, 0.858, 0.713, 0.402, 0.852, 0.704, 0.378, 0.847, + 0.695, 0.355, 0.842, 0.686, 0.331, 0.836, 0.677, 0.308, 0.831, 0.669, + 0.283, 0.826, 0.660, 0.258, 0.821, 0.651, 0.233, 0.815, 0.642, 0.206, + 0.653, 0.636, 0.998, 0.663, 0.646, 0.993, 0.673, 0.655, 0.988, 0.682, + 0.665, 0.983, 0.692, 0.674, 0.979, 0.702, 0.683, 0.974, 0.712, 0.692, + 0.970, 0.722, 0.702, 0.967, 0.733, 0.711, 0.963, 0.743, 0.720, 0.960, + 0.753, 0.730, 0.957, 0.764, 0.739, 0.954, 0.774, 0.748, 0.952, 0.785, + 0.757, 0.950, 0.796, 0.767, 0.948, 0.806, 0.776, 0.946, 0.817, 0.786, + 0.945, 0.828, 0.795, 0.943, 0.839, 0.804, 0.942, 0.850, 0.814, 0.941, + 0.861, 0.824, 0.941, 0.872, 0.833, 0.940, 0.884, 0.843, 0.940, 0.895, + 0.852, 0.940, 0.906, 0.862, 0.940, 0.917, 0.871, 0.941, 0.928, 0.880, + 0.941, 0.939, 0.889, 0.941, 0.949, 0.897, 0.941, 0.959, 0.904, 0.940, + 0.968, 0.910, 0.938, 0.975, 0.914, 0.933, 0.981, 0.914, 0.925, 0.984, + 0.912, 0.913, 0.985, 0.907, 0.897, 0.983, 0.900, 0.878, 0.980, 0.893, + 0.857, 0.976, 0.884, 0.836, 0.971, 0.875, 0.813, 0.965, 0.866, 0.790, + 0.959, 0.856, 0.767, 0.954, 0.847, 0.744, 0.947, 0.837, 0.721, 0.941, + 0.828, 0.698, 0.935, 0.818, 0.675, 0.929, 0.809, 0.652, 0.923, 0.800, + 0.629, 0.917, 0.790, 0.605, 0.912, 0.781, 0.582, 0.906, 0.771, 0.560, + 0.900, 0.762, 0.537, 0.894, 0.753, 0.514, 0.889, 0.744, 0.491, 0.883, + 0.735, 0.468, 0.877, 0.725, 0.445, 0.872, 0.716, 0.422, 0.866, 0.707, + 0.399, 0.861, 0.698, 0.376, 0.856, 0.689, 0.353, 0.850, 0.680, 0.329, + 0.845, 0.672, 0.305, 0.840, 0.663, 0.281, 0.834, 0.654, 0.256, 0.829, + 0.645, 0.231, 0.824, 0.636, 0.204, 0.662, 0.631, 0.998, 0.672, 0.641, + 0.993, 0.681, 0.650, 0.988, 0.691, 0.659, 0.983, 0.700, 0.669, 0.979, + 0.710, 0.678, 0.974, 0.720, 0.687, 0.970, 0.730, 0.696, 0.966, 0.740, + 0.706, 0.963, 0.750, 0.715, 0.960, 0.760, 0.724, 0.957, 0.771, 0.733, + 0.954, 0.781, 0.742, 0.951, 0.791, 0.752, 0.949, 0.802, 0.761, 0.947, + 0.812, 0.770, 0.945, 0.823, 0.779, 0.943, 0.834, 0.789, 0.942, 0.844, + 0.798, 0.941, 0.855, 0.807, 0.940, 0.866, 0.817, 0.939, 0.877, 0.826, + 0.938, 0.887, 0.835, 0.938, 0.898, 0.844, 0.937, 0.909, 0.853, 0.937, + 0.919, 0.862, 0.937, 0.930, 0.870, 0.936, 0.940, 0.878, 0.936, 0.950, + 0.885, 0.934, 0.958, 0.891, 0.932, 0.967, 0.896, 0.928, 0.974, 0.898, + 0.922, 0.979, 0.899, 0.914, 0.982, 0.897, 0.902, 0.984, 0.893, 0.886, + 0.984, 0.887, 0.869, 0.982, 0.880, 0.849, 0.979, 0.872, 0.828, 0.975, + 0.864, 0.807, 0.970, 0.856, 0.785, 0.965, 0.847, 0.762, 0.959, 0.838, + 0.739, 0.954, 0.829, 0.717, 0.948, 0.819, 0.694, 0.943, 0.810, 0.671, + 0.937, 0.801, 0.648, 0.931, 0.792, 0.625, 0.925, 0.782, 0.602, 0.919, + 0.773, 0.579, 0.914, 0.764, 0.556, 0.908, 0.755, 0.533, 0.902, 0.746, + 0.511, 0.897, 0.737, 0.488, 0.891, 0.728, 0.465, 0.886, 0.719, 0.442, + 0.880, 0.710, 0.420, 0.875, 0.701, 0.397, 0.869, 0.692, 0.374, 0.864, + 0.683, 0.350, 0.858, 0.674, 0.327, 0.853, 0.665, 0.303, 0.848, 0.657, + 0.279, 0.842, 0.648, 0.254, 0.837, 0.639, 0.229, 0.832, 0.630, 0.202, + 0.671, 0.625, 0.998, 0.680, 0.635, 0.993, 0.689, 0.644, 0.988, 0.698, + 0.654, 0.983, 0.708, 0.663, 0.978, 0.718, 0.672, 0.974, 0.727, 0.681, + 0.970, 0.737, 0.691, 0.966, 0.747, 0.700, 0.962, 0.757, 0.709, 0.959, + 0.767, 0.718, 0.956, 0.777, 0.727, 0.953, 0.787, 0.736, 0.950, 0.797, + 0.745, 0.948, 0.807, 0.755, 0.946, 0.818, 0.764, 0.944, 0.828, 0.773, + 0.942, 0.839, 0.782, 0.940, 0.849, 0.791, 0.939, 0.859, 0.800, 0.938, + 0.870, 0.809, 0.937, 0.880, 0.818, 0.936, 0.891, 0.827, 0.935, 0.901, + 0.835, 0.934, 0.911, 0.844, 0.933, 0.921, 0.852, 0.932, 0.931, 0.859, + 0.931, 0.941, 0.866, 0.929, 0.950, 0.873, 0.927, 0.958, 0.878, 0.923, + 0.966, 0.881, 0.919, 0.972, 0.883, 0.912, 0.977, 0.883, 0.903, 0.981, + 0.882, 0.891, 0.983, 0.878, 0.876, 0.984, 0.873, 0.859, 0.983, 0.867, + 0.841, 0.980, 0.860, 0.821, 0.977, 0.853, 0.800, 0.974, 0.845, 0.778, + 0.969, 0.836, 0.756, 0.964, 0.828, 0.734, 0.959, 0.819, 0.712, 0.954, + 0.810, 0.689, 0.949, 0.801, 0.666, 0.943, 0.792, 0.644, 0.938, 0.783, + 0.621, 0.932, 0.774, 0.598, 0.927, 0.765, 0.575, 0.921, 0.756, 0.553, + 0.916, 0.747, 0.530, 0.910, 0.738, 0.507, 0.904, 0.729, 0.485, 0.899, + 0.721, 0.462, 0.893, 0.712, 0.439, 0.888, 0.703, 0.417, 0.882, 0.694, + 0.394, 0.877, 0.685, 0.371, 0.871, 0.676, 0.348, 0.866, 0.668, 0.324, + 0.861, 0.659, 0.301, 0.855, 0.650, 0.277, 0.850, 0.641, 0.252, 0.845, + 0.633, 0.226, 0.839, 0.624, 0.200, 0.679, 0.619, 0.998, 0.688, 0.629, + 0.993, 0.697, 0.638, 0.988, 0.706, 0.648, 0.983, 0.715, 0.657, 0.978, + 0.725, 0.666, 0.974, 0.734, 0.675, 0.969, 0.744, 0.684, 0.965, 0.754, + 0.693, 0.962, 0.763, 0.703, 0.958, 0.773, 0.712, 0.955, 0.783, 0.721, + 0.952, 0.793, 0.730, 0.949, 0.803, 0.739, 0.947, 0.813, 0.748, 0.944, + 0.823, 0.757, 0.942, 0.833, 0.766, 0.940, 0.843, 0.774, 0.938, 0.853, + 0.783, 0.937, 0.863, 0.792, 0.935, 0.874, 0.801, 0.934, 0.884, 0.809, + 0.932, 0.894, 0.818, 0.931, 0.904, 0.826, 0.930, 0.913, 0.833, 0.928, + 0.923, 0.841, 0.927, 0.932, 0.848, 0.925, 0.941, 0.854, 0.922, 0.950, + 0.859, 0.919, 0.957, 0.864, 0.915, 0.965, 0.867, 0.909, 0.971, 0.868, + 0.901, 0.976, 0.868, 0.892, 0.980, 0.867, 0.880, 0.982, 0.863, 0.866, + 0.983, 0.859, 0.849, 0.983, 0.854, 0.832, 0.982, 0.847, 0.812, 0.979, + 0.840, 0.792, 0.976, 0.833, 0.771, 0.973, 0.825, 0.750, 0.969, 0.817, + 0.728, 0.964, 0.809, 0.706, 0.959, 0.800, 0.684, 0.954, 0.792, 0.661, + 0.949, 0.783, 0.639, 0.944, 0.774, 0.617, 0.939, 0.766, 0.594, 0.933, + 0.757, 0.572, 0.928, 0.748, 0.549, 0.922, 0.739, 0.527, 0.917, 0.731, + 0.504, 0.911, 0.722, 0.481, 0.906, 0.713, 0.459, 0.901, 0.704, 0.436, + 0.895, 0.695, 0.414, 0.890, 0.687, 0.391, 0.884, 0.678, 0.368, 0.879, + 0.669, 0.345, 0.873, 0.661, 0.322, 0.868, 0.652, 0.298, 0.863, 0.643, + 0.274, 0.857, 0.635, 0.249, 0.852, 0.626, 0.224, 0.846, 0.617, 0.197, + 0.686, 0.613, 0.998, 0.695, 0.622, 0.993, 0.704, 0.632, 0.987, 0.713, + 0.641, 0.982, 0.722, 0.650, 0.977, 0.732, 0.660, 0.973, 0.741, 0.669, + 0.969, 0.750, 0.678, 0.965, 0.760, 0.687, 0.961, 0.769, 0.696, 0.957, + 0.779, 0.705, 0.954, 0.789, 0.714, 0.951, 0.798, 0.723, 0.948, 0.808, + 0.731, 0.945, 0.818, 0.740, 0.943, 0.828, 0.749, 0.940, 0.838, 0.758, + 0.938, 0.847, 0.766, 0.936, 0.857, 0.775, 0.934, 0.867, 0.783, 0.932, + 0.877, 0.792, 0.930, 0.887, 0.800, 0.929, 0.896, 0.808, 0.927, 0.906, + 0.815, 0.925, 0.915, 0.823, 0.923, 0.924, 0.829, 0.921, 0.933, 0.836, + 0.918, 0.942, 0.841, 0.915, 0.950, 0.846, 0.911, 0.957, 0.850, 0.906, + 0.964, 0.852, 0.899, 0.970, 0.853, 0.891, 0.975, 0.853, 0.881, 0.979, + 0.852, 0.869, 0.981, 0.849, 0.855, 0.983, 0.845, 0.840, 0.983, 0.840, + 0.822, 0.982, 0.834, 0.804, 0.981, 0.828, 0.784, 0.978, 0.821, 0.764, + 0.975, 0.814, 0.743, 0.972, 0.806, 0.722, 0.968, 0.798, 0.700, 0.964, + 0.790, 0.678, 0.959, 0.782, 0.656, 0.954, 0.773, 0.634, 0.949, 0.765, + 0.612, 0.944, 0.757, 0.590, 0.939, 0.748, 0.567, 0.934, 0.739, 0.545, + 0.929, 0.731, 0.523, 0.923, 0.722, 0.500, 0.918, 0.714, 0.478, 0.913, + 0.705, 0.456, 0.907, 0.696, 0.433, 0.902, 0.688, 0.411, 0.896, 0.679, + 0.388, 0.891, 0.670, 0.365, 0.886, 0.662, 0.342, 0.880, 0.653, 0.319, + 0.875, 0.645, 0.295, 0.869, 0.636, 0.271, 0.864, 0.628, 0.247, 0.859, + 0.619, 0.221, 0.853, 0.611, 0.195, 0.694, 0.606, 0.998, 0.703, 0.616, + 0.992, 0.711, 0.625, 0.987, 0.720, 0.634, 0.982, 0.729, 0.644, 0.977, + 0.738, 0.653, 0.972, 0.747, 0.662, 0.968, 0.757, 0.671, 0.964, 0.766, + 0.680, 0.960, 0.775, 0.689, 0.956, 0.785, 0.698, 0.953, 0.794, 0.706, + 0.949, 0.804, 0.715, 0.946, 0.813, 0.724, 0.943, 0.823, 0.732, 0.941, + 0.832, 0.741, 0.938, 0.842, 0.749, 0.936, 0.851, 0.758, 0.933, 0.861, + 0.766, 0.931, 0.870, 0.774, 0.929, 0.880, 0.782, 0.927, 0.889, 0.790, + 0.924, 0.899, 0.797, 0.922, 0.908, 0.805, 0.920, 0.917, 0.811, 0.917, + 0.925, 0.818, 0.914, 0.934, 0.823, 0.911, 0.942, 0.828, 0.907, 0.950, + 0.832, 0.902, 0.957, 0.836, 0.896, 0.963, 0.838, 0.889, 0.969, 0.839, + 0.881, 0.974, 0.838, 0.871, 0.978, 0.837, 0.859, 0.980, 0.834, 0.845, + 0.982, 0.831, 0.830, 0.983, 0.826, 0.813, 0.983, 0.821, 0.795, 0.982, + 0.815, 0.776, 0.980, 0.809, 0.757, 0.978, 0.802, 0.736, 0.975, 0.794, + 0.715, 0.971, 0.787, 0.694, 0.967, 0.779, 0.673, 0.963, 0.771, 0.651, + 0.959, 0.763, 0.629, 0.954, 0.755, 0.607, 0.949, 0.747, 0.585, 0.944, + 0.739, 0.563, 0.939, 0.730, 0.541, 0.934, 0.722, 0.519, 0.929, 0.714, + 0.496, 0.924, 0.705, 0.474, 0.919, 0.697, 0.452, 0.913, 0.688, 0.430, + 0.908, 0.680, 0.407, 0.903, 0.671, 0.385, 0.897, 0.663, 0.362, 0.892, + 0.654, 0.339, 0.887, 0.646, 0.316, 0.881, 0.637, 0.293, 0.876, 0.629, + 0.269, 0.870, 0.620, 0.244, 0.865, 0.612, 0.219, 0.860, 0.604, 0.192, + 0.701, 0.599, 0.997, 0.710, 0.609, 0.992, 0.718, 0.618, 0.986, 0.727, + 0.627, 0.981, 0.736, 0.636, 0.976, 0.745, 0.645, 0.971, 0.754, 0.655, + 0.967, 0.763, 0.663, 0.963, 0.772, 0.672, 0.959, 0.781, 0.681, 0.955, + 0.790, 0.690, 0.951, 0.799, 0.699, 0.948, 0.808, 0.707, 0.944, 0.818, + 0.716, 0.941, 0.827, 0.724, 0.938, 0.836, 0.732, 0.935, 0.846, 0.741, + 0.933, 0.855, 0.749, 0.930, 0.864, 0.757, 0.928, 0.874, 0.765, 0.925, + 0.883, 0.772, 0.923, 0.892, 0.780, 0.920, 0.901, 0.787, 0.917, 0.910, + 0.793, 0.914, 0.918, 0.800, 0.911, 0.927, 0.805, 0.908, 0.935, 0.811, + 0.904, 0.942, 0.815, 0.899, 0.950, 0.819, 0.894, 0.956, 0.821, 0.887, + 0.963, 0.823, 0.880, 0.968, 0.824, 0.871, 0.973, 0.824, 0.860, 0.977, + 0.822, 0.849, 0.980, 0.820, 0.835, 0.982, 0.817, 0.820, 0.983, 0.812, + 0.804, 0.983, 0.808, 0.786, 0.983, 0.802, 0.768, 0.981, 0.796, 0.749, + 0.979, 0.789, 0.729, 0.977, 0.783, 0.709, 0.974, 0.776, 0.688, 0.970, + 0.768, 0.667, 0.967, 0.761, 0.645, 0.963, 0.753, 0.624, 0.958, 0.745, + 0.602, 0.954, 0.737, 0.580, 0.949, 0.729, 0.558, 0.944, 0.721, 0.536, + 0.939, 0.713, 0.514, 0.934, 0.704, 0.492, 0.929, 0.696, 0.470, 0.924, + 0.688, 0.448, 0.919, 0.680, 0.426, 0.914, 0.671, 0.404, 0.908, 0.663, + 0.381, 0.903, 0.655, 0.359, 0.898, 0.646, 0.336, 0.893, 0.638, 0.313, + 0.887, 0.629, 0.290, 0.882, 0.621, 0.266, 0.876, 0.613, 0.241, 0.871, + 0.604, 0.216, 0.866, 0.596, 0.189, 0.708, 0.592, 0.997, 0.716, 0.601, + 0.991, 0.725, 0.611, 0.985, 0.733, 0.620, 0.980, 0.742, 0.629, 0.975, + 0.751, 0.638, 0.970, 0.759, 0.647, 0.966, 0.768, 0.656, 0.961, 0.777, + 0.665, 0.957, 0.786, 0.673, 0.953, 0.795, 0.682, 0.949, 0.804, 0.690, + 0.946, 0.813, 0.699, 0.942, 0.822, 0.707, 0.939, 0.831, 0.715, 0.936, + 0.840, 0.723, 0.933, 0.849, 0.731, 0.930, 0.859, 0.739, 0.927, 0.868, + 0.747, 0.924, 0.876, 0.754, 0.921, 0.885, 0.762, 0.918, 0.894, 0.769, + 0.915, 0.903, 0.775, 0.912, 0.911, 0.782, 0.909, 0.920, 0.787, 0.905, + 0.928, 0.793, 0.901, 0.935, 0.798, 0.896, 0.943, 0.802, 0.891, 0.950, + 0.805, 0.885, 0.956, 0.807, 0.878, 0.962, 0.809, 0.870, 0.967, 0.809, + 0.861, 0.972, 0.809, 0.850, 0.976, 0.808, 0.838, 0.979, 0.805, 0.825, + 0.981, 0.802, 0.810, 0.983, 0.799, 0.795, 0.983, 0.794, 0.778, 0.983, + 0.789, 0.760, 0.982, 0.783, 0.741, 0.981, 0.777, 0.721, 0.979, 0.771, + 0.701, 0.976, 0.764, 0.681, 0.973, 0.757, 0.660, 0.970, 0.750, 0.639, + 0.966, 0.742, 0.618, 0.962, 0.735, 0.597, 0.958, 0.727, 0.575, 0.953, + 0.719, 0.553, 0.949, 0.711, 0.532, 0.944, 0.703, 0.510, 0.939, 0.695, + 0.488, 0.934, 0.687, 0.466, 0.929, 0.679, 0.444, 0.924, 0.671, 0.422, + 0.919, 0.663, 0.400, 0.914, 0.654, 0.378, 0.909, 0.646, 0.355, 0.903, + 0.638, 0.333, 0.898, 0.630, 0.310, 0.893, 0.621, 0.287, 0.887, 0.613, + 0.263, 0.882, 0.605, 0.238, 0.877, 0.597, 0.213, 0.871, 0.589, 0.186, + 0.715, 0.584, 0.996, 0.723, 0.593, 0.990, 0.731, 0.603, 0.984, 0.739, + 0.612, 0.979, 0.748, 0.621, 0.974, 0.756, 0.630, 0.969, 0.765, 0.639, + 0.964, 0.774, 0.648, 0.960, 0.782, 0.656, 0.955, 0.791, 0.665, 0.951, + 0.800, 0.673, 0.947, 0.809, 0.682, 0.943, 0.818, 0.690, 0.940, 0.826, + 0.698, 0.936, 0.835, 0.706, 0.933, 0.844, 0.714, 0.930, 0.853, 0.722, + 0.926, 0.862, 0.729, 0.923, 0.871, 0.737, 0.920, 0.879, 0.744, 0.917, + 0.888, 0.751, 0.913, 0.896, 0.758, 0.910, 0.905, 0.764, 0.906, 0.913, + 0.770, 0.903, 0.921, 0.775, 0.898, 0.929, 0.780, 0.894, 0.936, 0.784, + 0.889, 0.943, 0.788, 0.883, 0.950, 0.791, 0.877, 0.956, 0.793, 0.869, + 0.962, 0.794, 0.861, 0.967, 0.795, 0.851, 0.971, 0.794, 0.841, 0.975, + 0.793, 0.829, 0.978, 0.791, 0.815, 0.981, 0.788, 0.801, 0.982, 0.785, + 0.785, 0.983, 0.780, 0.769, 0.983, 0.776, 0.751, 0.983, 0.770, 0.733, + 0.982, 0.764, 0.714, 0.980, 0.758, 0.694, 0.978, 0.752, 0.674, 0.975, + 0.745, 0.654, 0.972, 0.738, 0.633, 0.969, 0.731, 0.612, 0.965, 0.724, + 0.591, 0.961, 0.716, 0.570, 0.957, 0.709, 0.548, 0.953, 0.701, 0.527, + 0.948, 0.693, 0.505, 0.943, 0.685, 0.484, 0.939, 0.678, 0.462, 0.934, + 0.670, 0.440, 0.929, 0.662, 0.418, 0.924, 0.654, 0.396, 0.919, 0.646, + 0.374, 0.914, 0.637, 0.352, 0.908, 0.629, 0.329, 0.903, 0.621, 0.307, + 0.898, 0.613, 0.283, 0.893, 0.605, 0.260, 0.887, 0.597, 0.235, 0.882, + 0.589, 0.210, 0.876, 0.581, 0.183, 0.721, 0.576, 0.995, 0.729, 0.585, + 0.989, 0.737, 0.595, 0.983, 0.745, 0.604, 0.978, 0.754, 0.613, 0.973, + 0.762, 0.622, 0.968, 0.770, 0.631, 0.963, 0.779, 0.639, 0.958, 0.787, + 0.648, 0.954, 0.796, 0.656, 0.949, 0.805, 0.665, 0.945, 0.813, 0.673, + 0.941, 0.822, 0.681, 0.937, 0.830, 0.689, 0.933, 0.839, 0.697, 0.930, + 0.848, 0.704, 0.926, 0.856, 0.712, 0.923, 0.865, 0.719, 0.919, 0.873, + 0.726, 0.916, 0.882, 0.733, 0.912, 0.890, 0.740, 0.908, 0.898, 0.746, + 0.905, 0.906, 0.752, 0.901, 0.914, 0.757, 0.896, 0.922, 0.762, 0.892, + 0.929, 0.767, 0.887, 0.937, 0.771, 0.881, 0.943, 0.774, 0.875, 0.950, + 0.777, 0.868, 0.956, 0.779, 0.860, 0.961, 0.780, 0.851, 0.966, 0.780, + 0.842, 0.971, 0.780, 0.831, 0.975, 0.779, 0.819, 0.978, 0.777, 0.806, + 0.980, 0.774, 0.791, 0.982, 0.771, 0.776, 0.983, 0.767, 0.760, 0.984, + 0.762, 0.742, 0.983, 0.757, 0.725, 0.983, 0.752, 0.706, 0.981, 0.746, + 0.687, 0.979, 0.740, 0.667, 0.977, 0.733, 0.647, 0.974, 0.727, 0.627, + 0.971, 0.720, 0.606, 0.968, 0.713, 0.585, 0.964, 0.706, 0.564, 0.960, + 0.698, 0.543, 0.956, 0.691, 0.522, 0.952, 0.683, 0.501, 0.947, 0.676, + 0.479, 0.943, 0.668, 0.458, 0.938, 0.660, 0.436, 0.933, 0.652, 0.414, + 0.928, 0.644, 0.392, 0.923, 0.636, 0.370, 0.918, 0.629, 0.348, 0.913, + 0.621, 0.326, 0.908, 0.613, 0.303, 0.903, 0.605, 0.280, 0.897, 0.597, + 0.257, 0.892, 0.589, 0.232, 0.887, 0.581, 0.207, 0.881, 0.573, 0.180, + 0.727, 0.568, 0.994, 0.735, 0.577, 0.988, 0.743, 0.586, 0.982, 0.751, + 0.595, 0.977, 0.759, 0.604, 0.971, 0.767, 0.613, 0.966, 0.776, 0.622, + 0.961, 0.784, 0.630, 0.956, 0.792, 0.639, 0.951, 0.801, 0.647, 0.947, + 0.809, 0.655, 0.943, 0.817, 0.663, 0.938, 0.826, 0.671, 0.934, 0.834, + 0.679, 0.930, 0.843, 0.687, 0.927, 0.851, 0.694, 0.923, 0.859, 0.702, + 0.919, 0.868, 0.709, 0.915, 0.876, 0.715, 0.911, 0.884, 0.722, 0.907, + 0.892, 0.728, 0.903, 0.900, 0.734, 0.899, 0.908, 0.740, 0.895, 0.916, + 0.745, 0.890, 0.923, 0.750, 0.885, 0.930, 0.754, 0.879, 0.937, 0.758, + 0.873, 0.944, 0.761, 0.867, 0.950, 0.763, 0.859, 0.956, 0.765, 0.851, + 0.961, 0.766, 0.842, 0.966, 0.766, 0.832, 0.970, 0.766, 0.821, 0.974, + 0.764, 0.809, 0.977, 0.762, 0.796, 0.980, 0.760, 0.782, 0.982, 0.757, + 0.767, 0.983, 0.753, 0.751, 0.984, 0.749, 0.734, 0.984, 0.744, 0.716, + 0.983, 0.739, 0.698, 0.982, 0.733, 0.679, 0.980, 0.727, 0.660, 0.978, + 0.721, 0.640, 0.976, 0.715, 0.620, 0.973, 0.708, 0.600, 0.970, 0.701, + 0.579, 0.967, 0.694, 0.559, 0.963, 0.687, 0.538, 0.959, 0.680, 0.517, + 0.955, 0.673, 0.496, 0.951, 0.665, 0.474, 0.946, 0.658, 0.453, 0.942, + 0.650, 0.432, 0.937, 0.643, 0.410, 0.932, 0.635, 0.388, 0.927, 0.627, + 0.367, 0.922, 0.619, 0.345, 0.917, 0.612, 0.322, 0.912, 0.604, 0.300, + 0.907, 0.596, 0.277, 0.902, 0.588, 0.253, 0.897, 0.580, 0.229, 0.891, + 0.572, 0.204, 0.886, 0.564, 0.177, 0.733, 0.559, 0.993, 0.741, 0.568, + 0.987, 0.749, 0.577, 0.981, 0.757, 0.587, 0.975, 0.765, 0.595, 0.970, + 0.773, 0.604, 0.964, 0.781, 0.613, 0.959, 0.789, 0.621, 0.954, 0.797, + 0.630, 0.949, 0.805, 0.638, 0.945, 0.813, 0.646, 0.940, 0.821, 0.654, + 0.936, 0.830, 0.662, 0.931, 0.838, 0.669, 0.927, 0.846, 0.677, 0.923, + 0.854, 0.684, 0.919, 0.862, 0.691, 0.915, 0.870, 0.698, 0.911, 0.879, + 0.704, 0.907, 0.886, 0.711, 0.902, 0.894, 0.717, 0.898, 0.902, 0.722, + 0.893, 0.910, 0.727, 0.889, 0.917, 0.732, 0.883, 0.924, 0.737, 0.878, + 0.931, 0.741, 0.872, 0.938, 0.744, 0.866, 0.944, 0.747, 0.859, 0.950, + 0.749, 0.851, 0.956, 0.751, 0.842, 0.961, 0.751, 0.833, 0.966, 0.752, + 0.823, 0.970, 0.751, 0.812, 0.974, 0.750, 0.800, 0.977, 0.748, 0.787, + 0.979, 0.746, 0.773, 0.981, 0.743, 0.758, 0.983, 0.739, 0.742, 0.984, + 0.735, 0.725, 0.984, 0.731, 0.708, 0.983, 0.726, 0.690, 0.983, 0.721, + 0.672, 0.981, 0.715, 0.653, 0.980, 0.709, 0.633, 0.977, 0.703, 0.614, + 0.975, 0.697, 0.594, 0.972, 0.690, 0.573, 0.969, 0.683, 0.553, 0.965, + 0.676, 0.532, 0.962, 0.669, 0.512, 0.958, 0.662, 0.491, 0.954, 0.655, + 0.470, 0.949, 0.648, 0.448, 0.945, 0.640, 0.427, 0.941, 0.633, 0.406, + 0.936, 0.625, 0.384, 0.931, 0.618, 0.363, 0.926, 0.610, 0.341, 0.921, + 0.602, 0.319, 0.916, 0.595, 0.296, 0.911, 0.587, 0.273, 0.906, 0.579, + 0.250, 0.901, 0.571, 0.226, 0.896, 0.563, 0.201, 0.890, 0.556, 0.174, + 0.739, 0.550, 0.992, 0.747, 0.559, 0.986, 0.754, 0.568, 0.980, 0.762, + 0.577, 0.974, 0.770, 0.586, 0.968, 0.778, 0.595, 0.962, 0.785, 0.603, + 0.957, 0.793, 0.612, 0.952, 0.801, 0.620, 0.947, 0.809, 0.628, 0.942, + 0.817, 0.636, 0.937, 0.825, 0.644, 0.933, 0.833, 0.651, 0.928, 0.841, + 0.659, 0.924, 0.849, 0.666, 0.919, 0.857, 0.673, 0.915, 0.865, 0.680, + 0.911, 0.873, 0.686, 0.906, 0.881, 0.693, 0.902, 0.889, 0.699, 0.897, + 0.896, 0.705, 0.892, 0.904, 0.710, 0.887, 0.911, 0.715, 0.882, 0.918, + 0.720, 0.877, 0.925, 0.724, 0.871, 0.932, 0.727, 0.865, 0.938, 0.730, + 0.858, 0.944, 0.733, 0.850, 0.950, 0.735, 0.842, 0.956, 0.736, 0.834, + 0.961, 0.737, 0.824, 0.965, 0.737, 0.814, 0.970, 0.737, 0.802, 0.973, + 0.736, 0.790, 0.976, 0.734, 0.777, 0.979, 0.732, 0.763, 0.981, 0.729, + 0.749, 0.982, 0.726, 0.733, 0.983, 0.722, 0.717, 0.984, 0.717, 0.700, + 0.984, 0.713, 0.682, 0.983, 0.708, 0.664, 0.982, 0.702, 0.645, 0.980, + 0.697, 0.626, 0.979, 0.691, 0.607, 0.976, 0.685, 0.587, 0.974, 0.678, + 0.567, 0.971, 0.672, 0.547, 0.967, 0.665, 0.527, 0.964, 0.658, 0.506, + 0.960, 0.651, 0.485, 0.956, 0.644, 0.465, 0.952, 0.637, 0.444, 0.948, + 0.630, 0.423, 0.944, 0.623, 0.401, 0.939, 0.615, 0.380, 0.934, 0.608, + 0.358, 0.930, 0.600, 0.337, 0.925, 0.593, 0.315, 0.920, 0.585, 0.292, + 0.915, 0.578, 0.270, 0.910, 0.570, 0.246, 0.905, 0.562, 0.222, 0.899, + 0.555, 0.197, 0.894, 0.547, 0.171, 0.745, 0.540, 0.991, 0.752, 0.550, + 0.984, 0.760, 0.559, 0.978, 0.767, 0.568, 0.972, 0.775, 0.577, 0.966, + 0.782, 0.585, 0.960, 0.790, 0.594, 0.955, 0.798, 0.602, 0.950, 0.806, + 0.610, 0.944, 0.813, 0.618, 0.939, 0.821, 0.626, 0.934, 0.829, 0.634, + 0.930, 0.837, 0.641, 0.925, 0.845, 0.648, 0.920, 0.852, 0.655, 0.915, + 0.860, 0.662, 0.911, 0.868, 0.669, 0.906, 0.876, 0.675, 0.901, 0.883, + 0.681, 0.897, 0.891, 0.687, 0.892, 0.898, 0.692, 0.887, 0.905, 0.697, + 0.881, 0.912, 0.702, 0.876, 0.919, 0.707, 0.870, 0.926, 0.710, 0.864, + 0.932, 0.714, 0.857, 0.939, 0.717, 0.850, 0.945, 0.719, 0.842, 0.950, + 0.721, 0.834, 0.956, 0.722, 0.825, 0.961, 0.723, 0.815, 0.965, 0.723, + 0.804, 0.969, 0.723, 0.793, 0.973, 0.722, 0.781, 0.976, 0.720, 0.768, + 0.978, 0.718, 0.754, 0.981, 0.715, 0.739, 0.982, 0.712, 0.724, 0.983, + 0.708, 0.708, 0.984, 0.704, 0.691, 0.984, 0.700, 0.674, 0.983, 0.695, + 0.656, 0.982, 0.690, 0.638, 0.981, 0.684, 0.619, 0.979, 0.679, 0.600, + 0.977, 0.673, 0.581, 0.975, 0.666, 0.561, 0.972, 0.660, 0.541, 0.969, + 0.654, 0.521, 0.966, 0.647, 0.501, 0.962, 0.640, 0.480, 0.959, 0.634, + 0.459, 0.955, 0.627, 0.439, 0.951, 0.620, 0.418, 0.946, 0.612, 0.397, + 0.942, 0.605, 0.376, 0.937, 0.598, 0.354, 0.933, 0.591, 0.333, 0.928, + 0.583, 0.311, 0.923, 0.576, 0.289, 0.918, 0.568, 0.266, 0.913, 0.561, + 0.243, 0.908, 0.553, 0.219, 0.903, 0.546, 0.194, 0.898, 0.538, 0.167, + 0.750, 0.531, 0.989, 0.757, 0.540, 0.983, 0.765, 0.549, 0.976, 0.772, + 0.558, 0.970, 0.779, 0.567, 0.964, 0.787, 0.575, 0.958, 0.794, 0.584, + 0.953, 0.802, 0.592, 0.947, 0.810, 0.600, 0.942, 0.817, 0.608, 0.936, + 0.825, 0.615, 0.931, 0.833, 0.623, 0.926, 0.840, 0.630, 0.921, 0.848, + 0.637, 0.916, 0.855, 0.644, 0.911, 0.863, 0.651, 0.907, 0.870, 0.657, + 0.902, 0.878, 0.663, 0.897, 0.885, 0.669, 0.891, 0.893, 0.675, 0.886, + 0.900, 0.680, 0.881, 0.907, 0.685, 0.875, 0.914, 0.689, 0.869, 0.920, + 0.693, 0.863, 0.927, 0.697, 0.857, 0.933, 0.700, 0.850, 0.939, 0.703, + 0.842, 0.945, 0.705, 0.834, 0.950, 0.707, 0.825, 0.956, 0.708, 0.816, + 0.960, 0.709, 0.806, 0.965, 0.709, 0.795, 0.969, 0.708, 0.784, 0.972, + 0.707, 0.772, 0.975, 0.706, 0.759, 0.978, 0.704, 0.745, 0.980, 0.701, + 0.731, 0.982, 0.698, 0.715, 0.983, 0.694, 0.699, 0.984, 0.691, 0.683, + 0.984, 0.686, 0.666, 0.983, 0.682, 0.648, 0.983, 0.677, 0.630, 0.982, + 0.672, 0.612, 0.980, 0.666, 0.593, 0.978, 0.660, 0.574, 0.976, 0.655, + 0.554, 0.973, 0.648, 0.535, 0.971, 0.642, 0.515, 0.967, 0.636, 0.495, + 0.964, 0.629, 0.475, 0.961, 0.623, 0.454, 0.957, 0.616, 0.434, 0.953, + 0.609, 0.413, 0.949, 0.602, 0.392, 0.944, 0.595, 0.371, 0.940, 0.588, + 0.350, 0.936, 0.580, 0.328, 0.931, 0.573, 0.307, 0.926, 0.566, 0.285, + 0.921, 0.559, 0.262, 0.916, 0.551, 0.239, 0.911, 0.544, 0.215, 0.906, + 0.536, 0.190, 0.901, 0.529, 0.164, 0.755, 0.521, 0.988, 0.762, 0.530, + 0.981, 0.770, 0.539, 0.975, 0.777, 0.548, 0.968, 0.784, 0.557, 0.962, + 0.791, 0.565, 0.956, 0.799, 0.573, 0.950, 0.806, 0.582, 0.944, 0.814, + 0.589, 0.939, 0.821, 0.597, 0.933, 0.828, 0.605, 0.928, 0.836, 0.612, + 0.923, 0.843, 0.619, 0.918, 0.851, 0.626, 0.912, 0.858, 0.633, 0.907, + 0.866, 0.639, 0.902, 0.873, 0.645, 0.897, 0.880, 0.651, 0.892, 0.887, + 0.657, 0.886, 0.894, 0.662, 0.881, 0.901, 0.667, 0.875, 0.908, 0.672, + 0.869, 0.915, 0.676, 0.863, 0.921, 0.680, 0.856, 0.928, 0.684, 0.849, + 0.934, 0.687, 0.842, 0.940, 0.689, 0.834, 0.945, 0.691, 0.826, 0.951, + 0.693, 0.817, 0.956, 0.694, 0.807, 0.960, 0.695, 0.797, 0.964, 0.695, + 0.787, 0.968, 0.694, 0.775, 0.972, 0.693, 0.763, 0.975, 0.692, 0.750, + 0.977, 0.690, 0.736, 0.980, 0.687, 0.722, 0.981, 0.684, 0.707, 0.982, + 0.681, 0.691, 0.983, 0.677, 0.675, 0.984, 0.673, 0.658, 0.983, 0.669, + 0.641, 0.983, 0.664, 0.623, 0.982, 0.659, 0.605, 0.980, 0.654, 0.586, + 0.979, 0.648, 0.567, 0.977, 0.642, 0.548, 0.974, 0.637, 0.529, 0.972, + 0.630, 0.509, 0.969, 0.624, 0.489, 0.966, 0.618, 0.469, 0.962, 0.611, + 0.449, 0.959, 0.605, 0.429, 0.955, 0.598, 0.408, 0.951, 0.591, 0.387, + 0.947, 0.584, 0.367, 0.942, 0.577, 0.346, 0.938, 0.570, 0.324, 0.933, + 0.563, 0.303, 0.929, 0.556, 0.281, 0.924, 0.549, 0.258, 0.919, 0.541, + 0.235, 0.914, 0.534, 0.212, 0.909, 0.527, 0.187, 0.904, 0.519, 0.160, + 0.760, 0.510, 0.986, 0.767, 0.520, 0.979, 0.774, 0.529, 0.973, 0.781, + 0.538, 0.966, 0.788, 0.546, 0.960, 0.796, 0.555, 0.954, 0.803, 0.563, + 0.948, 0.810, 0.571, 0.942, 0.817, 0.579, 0.936, 0.825, 0.586, 0.930, + 0.832, 0.594, 0.925, 0.839, 0.601, 0.919, 0.846, 0.608, 0.914, 0.854, + 0.615, 0.908, 0.861, 0.621, 0.903, 0.868, 0.627, 0.897, 0.875, 0.633, + 0.892, 0.882, 0.639, 0.886, 0.889, 0.645, 0.881, 0.896, 0.650, 0.875, + 0.903, 0.655, 0.869, 0.909, 0.659, 0.863, 0.916, 0.663, 0.856, 0.922, + 0.667, 0.849, 0.928, 0.670, 0.842, 0.934, 0.673, 0.834, 0.940, 0.675, + 0.826, 0.945, 0.677, 0.818, 0.951, 0.679, 0.809, 0.955, 0.680, 0.799, + 0.960, 0.680, 0.789, 0.964, 0.680, 0.778, 0.968, 0.680, 0.766, 0.971, + 0.679, 0.754, 0.974, 0.677, 0.741, 0.977, 0.676, 0.727, 0.979, 0.673, + 0.713, 0.981, 0.670, 0.698, 0.982, 0.667, 0.682, 0.983, 0.664, 0.666, + 0.983, 0.660, 0.650, 0.983, 0.655, 0.633, 0.983, 0.651, 0.615, 0.982, + 0.646, 0.597, 0.981, 0.641, 0.579, 0.979, 0.636, 0.560, 0.977, 0.630, + 0.541, 0.975, 0.625, 0.522, 0.973, 0.619, 0.503, 0.970, 0.613, 0.483, + 0.967, 0.606, 0.463, 0.964, 0.600, 0.443, 0.960, 0.594, 0.423, 0.956, + 0.587, 0.403, 0.953, 0.580, 0.383, 0.949, 0.574, 0.362, 0.944, 0.567, + 0.341, 0.940, 0.560, 0.320, 0.936, 0.553, 0.298, 0.931, 0.546, 0.277, + 0.926, 0.539, 0.254, 0.922, 0.532, 0.232, 0.917, 0.524, 0.208, 0.912, + 0.517, 0.183, 0.906, 0.510, 0.156, 0.765, 0.499, 0.985, 0.772, 0.509, + 0.978, 0.779, 0.518, 0.971, 0.786, 0.527, 0.964, 0.793, 0.535, 0.957, + 0.800, 0.544, 0.951, 0.807, 0.552, 0.945, 0.814, 0.560, 0.939, 0.821, + 0.568, 0.933, 0.828, 0.575, 0.927, 0.835, 0.582, 0.921, 0.842, 0.589, + 0.915, 0.849, 0.596, 0.910, 0.856, 0.603, 0.904, 0.863, 0.609, 0.898, + 0.870, 0.615, 0.893, 0.877, 0.621, 0.887, 0.884, 0.627, 0.881, 0.891, + 0.632, 0.875, 0.898, 0.637, 0.869, 0.904, 0.642, 0.863, 0.911, 0.646, + 0.856, 0.917, 0.650, 0.849, 0.923, 0.653, 0.842, 0.929, 0.657, 0.835, + 0.935, 0.659, 0.827, 0.940, 0.662, 0.818, 0.946, 0.663, 0.810, 0.951, + 0.665, 0.800, 0.955, 0.666, 0.790, 0.960, 0.666, 0.780, 0.964, 0.666, + 0.769, 0.967, 0.666, 0.757, 0.971, 0.665, 0.745, 0.974, 0.663, 0.732, + 0.976, 0.662, 0.718, 0.978, 0.659, 0.704, 0.980, 0.657, 0.689, 0.981, + 0.654, 0.674, 0.982, 0.650, 0.658, 0.983, 0.646, 0.642, 0.983, 0.642, + 0.625, 0.983, 0.638, 0.608, 0.982, 0.633, 0.590, 0.981, 0.628, 0.572, + 0.979, 0.623, 0.553, 0.978, 0.618, 0.535, 0.976, 0.612, 0.516, 0.973, + 0.607, 0.497, 0.971, 0.601, 0.477, 0.968, 0.595, 0.458, 0.965, 0.589, + 0.438, 0.961, 0.582, 0.418, 0.958, 0.576, 0.398, 0.954, 0.569, 0.378, + 0.950, 0.563, 0.357, 0.946, 0.556, 0.336, 0.942, 0.549, 0.315, 0.938, + 0.542, 0.294, 0.933, 0.536, 0.273, 0.928, 0.529, 0.250, 0.924, 0.522, + 0.228, 0.919, 0.514, 0.204, 0.914, 0.507, 0.179, 0.909, 0.500, 0.153, + 0.770, 0.488, 0.983, 0.777, 0.498, 0.976, 0.783, 0.507, 0.969, 0.790, + 0.516, 0.962, 0.797, 0.524, 0.955, 0.804, 0.533, 0.948, 0.811, 0.541, + 0.942, 0.817, 0.549, 0.936, 0.824, 0.556, 0.930, 0.831, 0.564, 0.924, + 0.838, 0.571, 0.918, 0.845, 0.578, 0.912, 0.852, 0.584, 0.906, 0.859, + 0.591, 0.900, 0.866, 0.597, 0.894, 0.873, 0.603, 0.888, 0.879, 0.609, + 0.882, 0.886, 0.614, 0.876, 0.893, 0.619, 0.869, 0.899, 0.624, 0.863, + 0.906, 0.629, 0.856, 0.912, 0.633, 0.850, 0.918, 0.637, 0.843, 0.924, + 0.640, 0.835, 0.930, 0.643, 0.827, 0.935, 0.646, 0.819, 0.941, 0.648, + 0.811, 0.946, 0.649, 0.802, 0.951, 0.651, 0.792, 0.955, 0.652, 0.782, + 0.959, 0.652, 0.771, 0.963, 0.652, 0.760, 0.967, 0.652, 0.749, 0.970, + 0.651, 0.736, 0.973, 0.649, 0.723, 0.976, 0.647, 0.710, 0.978, 0.645, + 0.696, 0.980, 0.643, 0.681, 0.981, 0.640, 0.666, 0.982, 0.637, 0.650, + 0.982, 0.633, 0.634, 0.983, 0.629, 0.617, 0.982, 0.625, 0.600, 0.982, + 0.620, 0.582, 0.981, 0.616, 0.565, 0.979, 0.611, 0.546, 0.978, 0.605, + 0.528, 0.976, 0.600, 0.509, 0.974, 0.595, 0.490, 0.971, 0.589, 0.471, + 0.969, 0.583, 0.452, 0.966, 0.577, 0.432, 0.962, 0.571, 0.413, 0.959, + 0.565, 0.393, 0.955, 0.558, 0.373, 0.952, 0.552, 0.352, 0.948, 0.545, + 0.332, 0.943, 0.539, 0.311, 0.939, 0.532, 0.290, 0.935, 0.525, 0.268, + 0.930, 0.518, 0.246, 0.926, 0.511, 0.224, 0.921, 0.504, 0.200, 0.916, + 0.497, 0.175, 0.911, 0.490, 0.149, 0.775, 0.477, 0.981, 0.781, 0.486, + 0.974, 0.788, 0.495, 0.966, 0.794, 0.504, 0.959, 0.801, 0.513, 0.952, + 0.808, 0.521, 0.946, 0.814, 0.529, 0.939, 0.821, 0.537, 0.933, 0.828, + 0.545, 0.926, 0.835, 0.552, 0.920, 0.841, 0.559, 0.914, 0.848, 0.566, + 0.908, 0.855, 0.572, 0.901, 0.862, 0.579, 0.895, 0.868, 0.585, 0.889, + 0.875, 0.591, 0.883, 0.881, 0.596, 0.877, 0.888, 0.601, 0.870, 0.894, + 0.606, 0.864, 0.901, 0.611, 0.857, 0.907, 0.615, 0.850, 0.913, 0.619, + 0.843, 0.919, 0.623, 0.836, 0.925, 0.626, 0.828, 0.930, 0.629, 0.820, + 0.936, 0.632, 0.812, 0.941, 0.634, 0.803, 0.946, 0.635, 0.794, 0.951, + 0.637, 0.784, 0.955, 0.637, 0.774, 0.959, 0.638, 0.763, 0.963, 0.638, + 0.752, 0.967, 0.637, 0.740, 0.970, 0.636, 0.728, 0.973, 0.635, 0.715, + 0.975, 0.633, 0.701, 0.977, 0.631, 0.687, 0.979, 0.629, 0.672, 0.980, + 0.626, 0.657, 0.981, 0.623, 0.642, 0.982, 0.619, 0.626, 0.982, 0.616, + 0.609, 0.982, 0.612, 0.592, 0.981, 0.607, 0.575, 0.981, 0.603, 0.557, + 0.979, 0.598, 0.540, 0.978, 0.593, 0.521, 0.976, 0.588, 0.503, 0.974, + 0.582, 0.484, 0.972, 0.577, 0.465, 0.969, 0.571, 0.446, 0.966, 0.565, + 0.427, 0.963, 0.559, 0.407, 0.960, 0.553, 0.387, 0.956, 0.547, 0.368, + 0.953, 0.541, 0.347, 0.949, 0.534, 0.327, 0.945, 0.528, 0.306, 0.941, + 0.521, 0.285, 0.936, 0.514, 0.264, 0.932, 0.508, 0.242, 0.927, 0.501, + 0.220, 0.922, 0.494, 0.196, 0.918, 0.487, 0.172, 0.913, 0.480, 0.145, + 0.779, 0.465, 0.979, 0.785, 0.474, 0.971, 0.792, 0.484, 0.964, 0.798, + 0.492, 0.957, 0.805, 0.501, 0.950, 0.811, 0.509, 0.943, 0.818, 0.517, + 0.936, 0.824, 0.525, 0.929, 0.831, 0.533, 0.923, 0.838, 0.540, 0.916, + 0.844, 0.547, 0.910, 0.851, 0.554, 0.904, 0.857, 0.560, 0.897, 0.864, + 0.566, 0.891, 0.870, 0.572, 0.884, 0.877, 0.578, 0.878, 0.883, 0.583, + 0.871, 0.890, 0.589, 0.865, 0.896, 0.593, 0.858, 0.902, 0.598, 0.851, + 0.908, 0.602, 0.844, 0.914, 0.606, 0.837, 0.920, 0.609, 0.829, 0.925, + 0.613, 0.821, 0.931, 0.615, 0.813, 0.936, 0.618, 0.804, 0.941, 0.620, + 0.795, 0.946, 0.621, 0.786, 0.950, 0.622, 0.776, 0.955, 0.623, 0.765, + 0.959, 0.624, 0.755, 0.963, 0.624, 0.743, 0.966, 0.623, 0.731, 0.969, + 0.622, 0.719, 0.972, 0.621, 0.706, 0.974, 0.619, 0.693, 0.976, 0.617, + 0.679, 0.978, 0.615, 0.664, 0.979, 0.612, 0.649, 0.980, 0.609, 0.634, + 0.981, 0.606, 0.618, 0.981, 0.602, 0.601, 0.981, 0.598, 0.585, 0.981, + 0.594, 0.568, 0.980, 0.590, 0.550, 0.979, 0.585, 0.533, 0.978, 0.580, + 0.515, 0.976, 0.575, 0.496, 0.974, 0.570, 0.478, 0.972, 0.565, 0.459, + 0.969, 0.559, 0.440, 0.967, 0.553, 0.421, 0.964, 0.547, 0.402, 0.960, + 0.542, 0.382, 0.957, 0.535, 0.362, 0.953, 0.529, 0.342, 0.950, 0.523, + 0.322, 0.946, 0.517, 0.302, 0.942, 0.510, 0.281, 0.937, 0.504, 0.260, + 0.933, 0.497, 0.238, 0.929, 0.490, 0.216, 0.924, 0.484, 0.192, 0.919, + 0.477, 0.168, 0.914, 0.470, 0.141, 0.783, 0.453, 0.977, 0.789, 0.462, + 0.969, 0.796, 0.471, 0.962, 0.802, 0.480, 0.954, 0.808, 0.489, 0.947, + 0.815, 0.497, 0.940, 0.821, 0.505, 0.933, 0.828, 0.513, 0.926, 0.834, + 0.520, 0.919, 0.840, 0.527, 0.913, 0.847, 0.534, 0.906, 0.853, 0.541, + 0.899, 0.860, 0.548, 0.893, 0.866, 0.554, 0.886, 0.873, 0.560, 0.880, + 0.879, 0.565, 0.873, 0.885, 0.570, 0.866, 0.891, 0.575, 0.859, 0.897, + 0.580, 0.852, 0.903, 0.585, 0.845, 0.909, 0.589, 0.838, 0.915, 0.592, + 0.830, 0.921, 0.596, 0.822, 0.926, 0.599, 0.814, 0.931, 0.601, 0.805, + 0.936, 0.604, 0.797, 0.941, 0.606, 0.787, 0.946, 0.607, 0.778, 0.950, + 0.608, 0.768, 0.955, 0.609, 0.757, 0.958, 0.609, 0.746, 0.962, 0.609, + 0.735, 0.965, 0.609, 0.723, 0.968, 0.608, 0.710, 0.971, 0.607, 0.698, + 0.974, 0.605, 0.684, 0.976, 0.603, 0.670, 0.977, 0.601, 0.656, 0.979, + 0.598, 0.641, 0.980, 0.596, 0.626, 0.980, 0.592, 0.610, 0.981, 0.589, + 0.594, 0.981, 0.585, 0.577, 0.980, 0.581, 0.560, 0.980, 0.577, 0.543, + 0.979, 0.572, 0.526, 0.977, 0.568, 0.508, 0.976, 0.563, 0.490, 0.974, + 0.558, 0.471, 0.972, 0.552, 0.453, 0.969, 0.547, 0.434, 0.967, 0.541, + 0.415, 0.964, 0.536, 0.396, 0.961, 0.530, 0.377, 0.958, 0.524, 0.357, + 0.954, 0.518, 0.337, 0.950, 0.512, 0.317, 0.947, 0.505, 0.297, 0.943, + 0.499, 0.276, 0.938, 0.493, 0.255, 0.934, 0.486, 0.234, 0.930, 0.480, + 0.211, 0.925, 0.473, 0.188, 0.920, 0.466, 0.164, 0.916, 0.459, 0.137, + 0.787, 0.440, 0.975, 0.793, 0.450, 0.967, 0.799, 0.459, 0.959, 0.806, + 0.468, 0.952, 0.812, 0.476, 0.944, 0.818, 0.485, 0.937, 0.824, 0.493, + 0.930, 0.831, 0.500, 0.923, 0.837, 0.508, 0.916, 0.843, 0.515, 0.909, + 0.850, 0.522, 0.902, 0.856, 0.528, 0.895, 0.862, 0.535, 0.888, 0.868, + 0.541, 0.881, 0.874, 0.547, 0.875, 0.881, 0.552, 0.868, 0.887, 0.557, + 0.861, 0.893, 0.562, 0.853, 0.899, 0.567, 0.846, 0.904, 0.571, 0.839, + 0.910, 0.575, 0.831, 0.916, 0.579, 0.823, 0.921, 0.582, 0.815, 0.926, + 0.585, 0.807, 0.932, 0.587, 0.798, 0.937, 0.590, 0.789, 0.941, 0.591, + 0.780, 0.946, 0.593, 0.770, 0.950, 0.594, 0.760, 0.954, 0.595, 0.749, + 0.958, 0.595, 0.738, 0.962, 0.595, 0.727, 0.965, 0.595, 0.715, 0.968, + 0.594, 0.702, 0.970, 0.593, 0.689, 0.973, 0.591, 0.676, 0.975, 0.589, + 0.662, 0.976, 0.587, 0.648, 0.978, 0.585, 0.633, 0.979, 0.582, 0.618, + 0.980, 0.579, 0.602, 0.980, 0.575, 0.586, 0.980, 0.572, 0.570, 0.980, + 0.568, 0.553, 0.979, 0.564, 0.536, 0.978, 0.559, 0.518, 0.977, 0.555, + 0.501, 0.975, 0.550, 0.483, 0.974, 0.545, 0.465, 0.972, 0.540, 0.447, + 0.969, 0.535, 0.428, 0.967, 0.529, 0.409, 0.964, 0.524, 0.390, 0.961, + 0.518, 0.371, 0.958, 0.512, 0.352, 0.954, 0.506, 0.332, 0.951, 0.500, + 0.312, 0.947, 0.494, 0.292, 0.943, 0.488, 0.272, 0.939, 0.481, 0.251, + 0.935, 0.475, 0.229, 0.931, 0.469, 0.207, 0.926, 0.462, 0.184, 0.921, + 0.455, 0.159, 0.917, 0.449, 0.133, 0.791, 0.427, 0.973, 0.797, 0.437, + 0.964, 0.803, 0.446, 0.957, 0.809, 0.455, 0.949, 0.815, 0.464, 0.941, + 0.821, 0.472, 0.934, 0.827, 0.480, 0.926, 0.834, 0.488, 0.919, 0.840, + 0.495, 0.912, 0.846, 0.502, 0.905, 0.852, 0.509, 0.898, 0.858, 0.515, + 0.891, 0.864, 0.522, 0.884, 0.870, 0.528, 0.877, 0.876, 0.533, 0.870, + 0.882, 0.539, 0.862, 0.888, 0.544, 0.855, 0.894, 0.549, 0.848, 0.900, + 0.553, 0.840, 0.906, 0.557, 0.833, 0.911, 0.561, 0.825, 0.916, 0.565, + 0.817, 0.922, 0.568, 0.808, 0.927, 0.571, 0.800, 0.932, 0.573, 0.791, + 0.937, 0.575, 0.782, 0.941, 0.577, 0.772, 0.946, 0.579, 0.762, 0.950, + 0.580, 0.752, 0.954, 0.580, 0.741, 0.958, 0.581, 0.730, 0.961, 0.581, + 0.718, 0.964, 0.580, 0.706, 0.967, 0.580, 0.694, 0.970, 0.578, 0.681, + 0.972, 0.577, 0.667, 0.974, 0.575, 0.654, 0.976, 0.573, 0.639, 0.977, + 0.571, 0.625, 0.978, 0.568, 0.610, 0.979, 0.565, 0.594, 0.979, 0.562, + 0.578, 0.979, 0.558, 0.562, 0.979, 0.554, 0.545, 0.978, 0.550, 0.529, + 0.977, 0.546, 0.511, 0.976, 0.542, 0.494, 0.975, 0.537, 0.476, 0.973, + 0.532, 0.458, 0.971, 0.527, 0.440, 0.969, 0.522, 0.422, 0.967, 0.517, + 0.403, 0.964, 0.511, 0.385, 0.961, 0.506, 0.366, 0.958, 0.500, 0.347, + 0.955, 0.494, 0.327, 0.951, 0.488, 0.307, 0.947, 0.482, 0.287, 0.944, + 0.476, 0.267, 0.940, 0.470, 0.246, 0.935, 0.464, 0.225, 0.931, 0.458, + 0.203, 0.927, 0.451, 0.180, 0.922, 0.445, 0.155, 0.917, 0.438, 0.129, + 0.795, 0.413, 0.970, 0.801, 0.423, 0.962, 0.807, 0.433, 0.954, 0.813, + 0.442, 0.946, 0.818, 0.450, 0.938, 0.824, 0.459, 0.930, 0.830, 0.467, + 0.923, 0.836, 0.474, 0.915, 0.842, 0.482, 0.908, 0.848, 0.489, 0.901, + 0.854, 0.496, 0.894, 0.860, 0.502, 0.886, 0.866, 0.508, 0.879, 0.872, + 0.514, 0.872, 0.878, 0.520, 0.864, 0.884, 0.525, 0.857, 0.890, 0.530, + 0.850, 0.895, 0.535, 0.842, 0.901, 0.539, 0.834, 0.906, 0.543, 0.826, + 0.912, 0.547, 0.818, 0.917, 0.551, 0.810, 0.922, 0.554, 0.801, 0.927, + 0.557, 0.793, 0.932, 0.559, 0.783, 0.937, 0.561, 0.774, 0.941, 0.563, + 0.764, 0.946, 0.564, 0.754, 0.950, 0.565, 0.744, 0.953, 0.566, 0.733, + 0.957, 0.566, 0.722, 0.960, 0.566, 0.710, 0.963, 0.566, 0.698, 0.966, + 0.565, 0.685, 0.969, 0.564, 0.673, 0.971, 0.563, 0.659, 0.973, 0.561, + 0.645, 0.975, 0.559, 0.631, 0.976, 0.557, 0.617, 0.977, 0.554, 0.602, + 0.978, 0.551, 0.586, 0.978, 0.548, 0.571, 0.978, 0.545, 0.554, 0.978, + 0.541, 0.538, 0.977, 0.537, 0.521, 0.977, 0.533, 0.504, 0.976, 0.529, + 0.487, 0.974, 0.524, 0.470, 0.973, 0.519, 0.452, 0.971, 0.515, 0.434, + 0.969, 0.510, 0.416, 0.966, 0.504, 0.398, 0.964, 0.499, 0.379, 0.961, + 0.494, 0.360, 0.958, 0.488, 0.341, 0.955, 0.482, 0.322, 0.951, 0.477, + 0.302, 0.948, 0.471, 0.283, 0.944, 0.465, 0.262, 0.940, 0.459, 0.242, + 0.936, 0.452, 0.220, 0.932, 0.446, 0.198, 0.927, 0.440, 0.175, 0.923, + 0.434, 0.151, 0.918, 0.427, 0.124, 0.799, 0.399, 0.968, 0.804, 0.409, + 0.959, 0.810, 0.419, 0.951, 0.816, 0.428, 0.943, 0.822, 0.437, 0.935, + 0.827, 0.445, 0.927, 0.833, 0.453, 0.919, 0.839, 0.461, 0.912, 0.845, + 0.468, 0.904, 0.851, 0.475, 0.897, 0.857, 0.482, 0.889, 0.862, 0.489, + 0.882, 0.868, 0.495, 0.874, 0.874, 0.501, 0.867, 0.880, 0.506, 0.859, + 0.885, 0.511, 0.852, 0.891, 0.516, 0.844, 0.897, 0.521, 0.836, 0.902, + 0.525, 0.828, 0.907, 0.529, 0.820, 0.913, 0.533, 0.812, 0.918, 0.537, + 0.803, 0.923, 0.540, 0.794, 0.928, 0.542, 0.785, 0.932, 0.545, 0.776, + 0.937, 0.547, 0.767, 0.941, 0.549, 0.757, 0.945, 0.550, 0.747, 0.949, + 0.551, 0.736, 0.953, 0.552, 0.725, 0.956, 0.552, 0.714, 0.960, 0.552, + 0.702, 0.963, 0.552, 0.690, 0.965, 0.551, 0.677, 0.968, 0.550, 0.664, + 0.970, 0.549, 0.651, 0.972, 0.547, 0.637, 0.974, 0.545, 0.623, 0.975, + 0.543, 0.609, 0.976, 0.540, 0.594, 0.977, 0.537, 0.578, 0.977, 0.534, + 0.563, 0.977, 0.531, 0.547, 0.977, 0.527, 0.531, 0.976, 0.524, 0.514, + 0.976, 0.520, 0.497, 0.975, 0.516, 0.480, 0.973, 0.511, 0.463, 0.972, + 0.507, 0.446, 0.970, 0.502, 0.428, 0.968, 0.497, 0.410, 0.966, 0.492, + 0.392, 0.963, 0.487, 0.373, 0.960, 0.481, 0.355, 0.957, 0.476, 0.336, + 0.954, 0.470, 0.317, 0.951, 0.465, 0.297, 0.947, 0.459, 0.278, 0.944, + 0.453, 0.258, 0.940, 0.447, 0.237, 0.936, 0.441, 0.216, 0.932, 0.435, + 0.194, 0.927, 0.429, 0.171, 0.923, 0.422, 0.147, 0.918, 0.416, 0.120, + 0.802, 0.385, 0.965, 0.808, 0.395, 0.957, 0.813, 0.405, 0.948, 0.819, + 0.414, 0.940, 0.825, 0.423, 0.932, 0.830, 0.431, 0.924, 0.836, 0.439, + 0.916, 0.842, 0.447, 0.908, 0.847, 0.454, 0.900, 0.853, 0.462, 0.892, + 0.859, 0.468, 0.885, 0.864, 0.475, 0.877, 0.870, 0.481, 0.869, 0.876, + 0.487, 0.862, 0.881, 0.492, 0.854, 0.887, 0.498, 0.846, 0.892, 0.502, + 0.838, 0.898, 0.507, 0.830, 0.903, 0.511, 0.822, 0.908, 0.515, 0.814, + 0.913, 0.519, 0.805, 0.918, 0.522, 0.797, 0.923, 0.525, 0.788, 0.928, + 0.528, 0.778, 0.932, 0.530, 0.769, 0.937, 0.532, 0.759, 0.941, 0.534, + 0.749, 0.945, 0.535, 0.739, 0.949, 0.536, 0.728, 0.952, 0.537, 0.717, + 0.956, 0.537, 0.706, 0.959, 0.537, 0.694, 0.962, 0.537, 0.682, 0.964, + 0.536, 0.669, 0.967, 0.536, 0.656, 0.969, 0.534, 0.643, 0.971, 0.533, + 0.629, 0.972, 0.531, 0.615, 0.974, 0.529, 0.601, 0.975, 0.526, 0.586, + 0.975, 0.523, 0.571, 0.976, 0.521, 0.555, 0.976, 0.517, 0.540, 0.976, + 0.514, 0.523, 0.975, 0.510, 0.507, 0.975, 0.506, 0.490, 0.974, 0.502, + 0.474, 0.972, 0.498, 0.456, 0.971, 0.494, 0.439, 0.969, 0.489, 0.421, + 0.967, 0.484, 0.404, 0.965, 0.479, 0.386, 0.963, 0.474, 0.367, 0.960, + 0.469, 0.349, 0.957, 0.464, 0.330, 0.954, 0.458, 0.311, 0.951, 0.453, + 0.292, 0.947, 0.447, 0.273, 0.944, 0.441, 0.253, 0.940, 0.435, 0.232, + 0.936, 0.429, 0.211, 0.932, 0.423, 0.190, 0.927, 0.417, 0.167, 0.923, + 0.411, 0.142, 0.919, 0.405, 0.116, 0.806, 0.370, 0.963, 0.811, 0.380, + 0.954, 0.816, 0.390, 0.945, 0.822, 0.399, 0.937, 0.827, 0.408, 0.929, + 0.833, 0.417, 0.920, 0.838, 0.425, 0.912, 0.844, 0.433, 0.904, 0.850, + 0.440, 0.896, 0.855, 0.447, 0.888, 0.861, 0.454, 0.880, 0.866, 0.461, + 0.872, 0.872, 0.467, 0.865, 0.877, 0.473, 0.857, 0.883, 0.478, 0.849, + 0.888, 0.483, 0.841, 0.893, 0.488, 0.833, 0.899, 0.493, 0.824, 0.904, + 0.497, 0.816, 0.909, 0.501, 0.807, 0.914, 0.505, 0.799, 0.919, 0.508, + 0.790, 0.923, 0.511, 0.781, 0.928, 0.514, 0.771, 0.932, 0.516, 0.762, + 0.937, 0.518, 0.752, 0.941, 0.520, 0.742, 0.945, 0.521, 0.731, 0.948, + 0.522, 0.720, 0.952, 0.523, 0.709, 0.955, 0.523, 0.698, 0.958, 0.523, + 0.686, 0.961, 0.523, 0.674, 0.964, 0.522, 0.661, 0.966, 0.521, 0.648, + 0.968, 0.520, 0.635, 0.970, 0.518, 0.621, 0.971, 0.517, 0.607, 0.972, + 0.514, 0.593, 0.973, 0.512, 0.578, 0.974, 0.509, 0.563, 0.975, 0.507, + 0.548, 0.975, 0.503, 0.532, 0.975, 0.500, 0.516, 0.974, 0.497, 0.500, + 0.974, 0.493, 0.483, 0.973, 0.489, 0.467, 0.971, 0.485, 0.450, 0.970, + 0.480, 0.433, 0.968, 0.476, 0.415, 0.966, 0.471, 0.397, 0.964, 0.466, + 0.380, 0.962, 0.461, 0.362, 0.959, 0.456, 0.343, 0.956, 0.451, 0.325, + 0.953, 0.446, 0.306, 0.950, 0.440, 0.287, 0.947, 0.435, 0.268, 0.943, + 0.429, 0.248, 0.939, 0.423, 0.228, 0.936, 0.417, 0.207, 0.931, 0.411, + 0.185, 0.927, 0.405, 0.162, 0.923, 0.399, 0.138, 0.918, 0.393, 0.111, + 0.809, 0.354, 0.960, 0.814, 0.364, 0.951, 0.819, 0.375, 0.942, 0.825, + 0.384, 0.934, 0.830, 0.393, 0.925, 0.835, 0.402, 0.917, 0.841, 0.410, + 0.908, 0.846, 0.418, 0.900, 0.852, 0.426, 0.892, 0.857, 0.433, 0.884, + 0.863, 0.440, 0.876, 0.868, 0.446, 0.868, 0.873, 0.452, 0.860, 0.879, + 0.458, 0.852, 0.884, 0.464, 0.843, 0.889, 0.469, 0.835, 0.894, 0.474, + 0.827, 0.899, 0.478, 0.818, 0.904, 0.483, 0.810, 0.909, 0.486, 0.801, + 0.914, 0.490, 0.792, 0.919, 0.493, 0.783, 0.923, 0.496, 0.774, 0.928, + 0.499, 0.764, 0.932, 0.501, 0.755, 0.936, 0.503, 0.745, 0.940, 0.505, + 0.734, 0.944, 0.506, 0.724, 0.948, 0.507, 0.713, 0.951, 0.508, 0.701, + 0.954, 0.508, 0.690, 0.957, 0.508, 0.678, 0.960, 0.508, 0.666, 0.962, + 0.507, 0.653, 0.965, 0.507, 0.640, 0.967, 0.505, 0.627, 0.968, 0.504, + 0.613, 0.970, 0.502, 0.599, 0.971, 0.500, 0.585, 0.972, 0.498, 0.570, + 0.973, 0.495, 0.555, 0.973, 0.493, 0.540, 0.973, 0.490, 0.525, 0.973, + 0.486, 0.509, 0.973, 0.483, 0.493, 0.972, 0.479, 0.476, 0.971, 0.475, + 0.460, 0.970, 0.471, 0.443, 0.969, 0.467, 0.426, 0.967, 0.463, 0.409, + 0.965, 0.458, 0.391, 0.963, 0.453, 0.374, 0.961, 0.449, 0.356, 0.958, + 0.444, 0.338, 0.956, 0.438, 0.319, 0.953, 0.433, 0.301, 0.949, 0.428, + 0.282, 0.946, 0.422, 0.263, 0.943, 0.417, 0.243, 0.939, 0.411, 0.223, + 0.935, 0.405, 0.202, 0.931, 0.399, 0.181, 0.927, 0.393, 0.158, 0.923, + 0.387, 0.134, 0.918, 0.381, 0.107, + ]).reshape((65, 65, 3)) + +BiOrangeBlue = np.array( + [0.000, 0.000, 0.000, 0.000, 0.062, 0.125, 0.000, 0.125, 0.250, 0.000, + 0.188, 0.375, 0.000, 0.250, 0.500, 0.000, 0.312, 0.625, 0.000, 0.375, + 0.750, 0.000, 0.438, 0.875, 0.000, 0.500, 1.000, 0.125, 0.062, 0.000, + 0.125, 0.125, 0.125, 0.125, 0.188, 0.250, 0.125, 0.250, 0.375, 0.125, + 0.312, 0.500, 0.125, 0.375, 0.625, 0.125, 0.438, 0.750, 0.125, 0.500, + 0.875, 0.125, 0.562, 1.000, 0.250, 0.125, 0.000, 0.250, 0.188, 0.125, + 0.250, 0.250, 0.250, 0.250, 0.312, 0.375, 0.250, 0.375, 0.500, 0.250, + 0.438, 0.625, 0.250, 0.500, 0.750, 0.250, 0.562, 0.875, 0.250, 0.625, + 1.000, 0.375, 0.188, 0.000, 0.375, 0.250, 0.125, 0.375, 0.312, 0.250, + 0.375, 0.375, 0.375, 0.375, 0.438, 0.500, 0.375, 0.500, 0.625, 0.375, + 0.562, 0.750, 0.375, 0.625, 0.875, 0.375, 0.688, 1.000, 0.500, 0.250, + 0.000, 0.500, 0.312, 0.125, 0.500, 0.375, 0.250, 0.500, 0.438, 0.375, + 0.500, 0.500, 0.500, 0.500, 0.562, 0.625, 0.500, 0.625, 0.750, 0.500, + 0.688, 0.875, 0.500, 0.750, 1.000, 0.625, 0.312, 0.000, 0.625, 0.375, + 0.125, 0.625, 0.438, 0.250, 0.625, 0.500, 0.375, 0.625, 0.562, 0.500, + 0.625, 0.625, 0.625, 0.625, 0.688, 0.750, 0.625, 0.750, 0.875, 0.625, + 0.812, 1.000, 0.750, 0.375, 0.000, 0.750, 0.438, 0.125, 0.750, 0.500, + 0.250, 0.750, 0.562, 0.375, 0.750, 0.625, 0.500, 0.750, 0.688, 0.625, + 0.750, 0.750, 0.750, 0.750, 0.812, 0.875, 0.750, 0.875, 1.000, 0.875, + 0.438, 0.000, 0.875, 0.500, 0.125, 0.875, 0.562, 0.250, 0.875, 0.625, + 0.375, 0.875, 0.688, 0.500, 0.875, 0.750, 0.625, 0.875, 0.812, 0.750, + 0.875, 0.875, 0.875, 0.875, 0.938, 1.000, 1.000, 0.500, 0.000, 1.000, + 0.562, 0.125, 1.000, 0.625, 0.250, 1.000, 0.688, 0.375, 1.000, 0.750, + 0.500, 1.000, 0.812, 0.625, 1.000, 0.875, 0.750, 1.000, 0.938, 0.875, + 1.000, 1.000, 1.000, + ]).reshape((9, 9, 3)) + +cmaps = { + "BiPeak": SegmentedBivarColormap( + BiPeak, 256, "square", (.5, .5), name="BiPeak"), + "BiOrangeBlue": SegmentedBivarColormap( + BiOrangeBlue, 256, "square", (0, 0), name="BiOrangeBlue"), + "BiCone": SegmentedBivarColormap(BiPeak, 256, "circle", (.5, .5), name="BiCone"), +} diff --git a/lib/matplotlib/_cm_multivar.py b/lib/matplotlib/_cm_multivar.py new file mode 100644 index 000000000000..610d7c40935b --- /dev/null +++ b/lib/matplotlib/_cm_multivar.py @@ -0,0 +1,166 @@ +# auto-generated by https://github.com/trygvrad/multivariate_colormaps +# date: 2024-05-28 + +from .colors import LinearSegmentedColormap, MultivarColormap +import matplotlib as mpl +_LUTSIZE = mpl.rcParams['image.lut'] + +_2VarAddA0_data = [[0.000, 0.000, 0.000], + [0.020, 0.026, 0.031], + [0.049, 0.068, 0.085], + [0.075, 0.107, 0.135], + [0.097, 0.144, 0.183], + [0.116, 0.178, 0.231], + [0.133, 0.212, 0.279], + [0.148, 0.244, 0.326], + [0.161, 0.276, 0.374], + [0.173, 0.308, 0.422], + [0.182, 0.339, 0.471], + [0.190, 0.370, 0.521], + [0.197, 0.400, 0.572], + [0.201, 0.431, 0.623], + [0.204, 0.461, 0.675], + [0.204, 0.491, 0.728], + [0.202, 0.520, 0.783], + [0.197, 0.549, 0.838], + [0.187, 0.577, 0.895]] + +_2VarAddA1_data = [[0.000, 0.000, 0.000], + [0.030, 0.023, 0.018], + [0.079, 0.060, 0.043], + [0.125, 0.093, 0.065], + [0.170, 0.123, 0.083], + [0.213, 0.151, 0.098], + [0.255, 0.177, 0.110], + [0.298, 0.202, 0.120], + [0.341, 0.226, 0.128], + [0.384, 0.249, 0.134], + [0.427, 0.271, 0.138], + [0.472, 0.292, 0.141], + [0.517, 0.313, 0.142], + [0.563, 0.333, 0.141], + [0.610, 0.353, 0.139], + [0.658, 0.372, 0.134], + [0.708, 0.390, 0.127], + [0.759, 0.407, 0.118], + [0.813, 0.423, 0.105]] + +_2VarSubA0_data = [[1.000, 1.000, 1.000], + [0.959, 0.973, 0.986], + [0.916, 0.948, 0.974], + [0.874, 0.923, 0.965], + [0.832, 0.899, 0.956], + [0.790, 0.875, 0.948], + [0.748, 0.852, 0.940], + [0.707, 0.829, 0.934], + [0.665, 0.806, 0.927], + [0.624, 0.784, 0.921], + [0.583, 0.762, 0.916], + [0.541, 0.740, 0.910], + [0.500, 0.718, 0.905], + [0.457, 0.697, 0.901], + [0.414, 0.675, 0.896], + [0.369, 0.652, 0.892], + [0.320, 0.629, 0.888], + [0.266, 0.604, 0.884], + [0.199, 0.574, 0.881]] + +_2VarSubA1_data = [[1.000, 1.000, 1.000], + [0.982, 0.967, 0.955], + [0.966, 0.935, 0.908], + [0.951, 0.902, 0.860], + [0.937, 0.870, 0.813], + [0.923, 0.838, 0.765], + [0.910, 0.807, 0.718], + [0.898, 0.776, 0.671], + [0.886, 0.745, 0.624], + [0.874, 0.714, 0.577], + [0.862, 0.683, 0.530], + [0.851, 0.653, 0.483], + [0.841, 0.622, 0.435], + [0.831, 0.592, 0.388], + [0.822, 0.561, 0.340], + [0.813, 0.530, 0.290], + [0.806, 0.498, 0.239], + [0.802, 0.464, 0.184], + [0.801, 0.426, 0.119]] + +_3VarAddA0_data = [[0.000, 0.000, 0.000], + [0.018, 0.023, 0.028], + [0.040, 0.056, 0.071], + [0.059, 0.087, 0.110], + [0.074, 0.114, 0.147], + [0.086, 0.139, 0.183], + [0.095, 0.163, 0.219], + [0.101, 0.187, 0.255], + [0.105, 0.209, 0.290], + [0.107, 0.230, 0.326], + [0.105, 0.251, 0.362], + [0.101, 0.271, 0.398], + [0.091, 0.291, 0.434], + [0.075, 0.309, 0.471], + [0.046, 0.325, 0.507], + [0.021, 0.341, 0.546], + [0.021, 0.363, 0.584], + [0.022, 0.385, 0.622], + [0.023, 0.408, 0.661]] + +_3VarAddA1_data = [[0.000, 0.000, 0.000], + [0.020, 0.024, 0.016], + [0.047, 0.058, 0.034], + [0.072, 0.088, 0.048], + [0.093, 0.116, 0.059], + [0.113, 0.142, 0.067], + [0.131, 0.167, 0.071], + [0.149, 0.190, 0.074], + [0.166, 0.213, 0.074], + [0.182, 0.235, 0.072], + [0.198, 0.256, 0.068], + [0.215, 0.276, 0.061], + [0.232, 0.296, 0.051], + [0.249, 0.314, 0.037], + [0.270, 0.330, 0.018], + [0.288, 0.347, 0.000], + [0.302, 0.369, 0.000], + [0.315, 0.391, 0.000], + [0.328, 0.414, 0.000]] + +_3VarAddA2_data = [[0.000, 0.000, 0.000], + [0.029, 0.020, 0.023], + [0.072, 0.045, 0.055], + [0.111, 0.067, 0.084], + [0.148, 0.085, 0.109], + [0.184, 0.101, 0.133], + [0.219, 0.115, 0.155], + [0.254, 0.127, 0.176], + [0.289, 0.138, 0.195], + [0.323, 0.147, 0.214], + [0.358, 0.155, 0.232], + [0.393, 0.161, 0.250], + [0.429, 0.166, 0.267], + [0.467, 0.169, 0.283], + [0.507, 0.168, 0.298], + [0.546, 0.168, 0.313], + [0.580, 0.172, 0.328], + [0.615, 0.175, 0.341], + [0.649, 0.178, 0.355]] + +cmaps = { + name: LinearSegmentedColormap.from_list(name, data, _LUTSIZE) for name, data in [ + ('2VarAddA0', _2VarAddA0_data), + ('2VarAddA1', _2VarAddA1_data), + ('2VarSubA0', _2VarSubA0_data), + ('2VarSubA1', _2VarSubA1_data), + ('3VarAddA0', _3VarAddA0_data), + ('3VarAddA1', _3VarAddA1_data), + ('3VarAddA2', _3VarAddA2_data), + ]} + +cmap_families = { + '2VarAddA': MultivarColormap([cmaps[f'2VarAddA{i}'] for i in range(2)], + 'sRGB_add', name='2VarAddA'), + '2VarSubA': MultivarColormap([cmaps[f'2VarSubA{i}'] for i in range(2)], + 'sRGB_sub', name='2VarSubA'), + '3VarAddA': MultivarColormap([cmaps[f'3VarAddA{i}'] for i in range(3)], + 'sRGB_add', name='3VarAddA'), +} diff --git a/lib/matplotlib/cm.py b/lib/matplotlib/cm.py index f5bc455df1f7..025cb84db1d7 100644 --- a/lib/matplotlib/cm.py +++ b/lib/matplotlib/cm.py @@ -24,6 +24,8 @@ from matplotlib import _api, colors, cbook, scale from matplotlib._cm import datad from matplotlib._cm_listed import cmaps as cmaps_listed +from matplotlib._cm_multivar import cmap_families as multivar_cmaps +from matplotlib._cm_bivar import cmaps as bivar_cmaps _LUTSIZE = mpl.rcParams['image.lut'] @@ -238,6 +240,10 @@ def get_cmap(self, cmap): _colormaps = ColormapRegistry(_gen_cmap_registry()) globals().update(_colormaps) +_multivar_colormaps = ColormapRegistry(multivar_cmaps) + +_bivar_colormaps = ColormapRegistry(bivar_cmaps) + # This is an exact copy of pyplot.get_cmap(). It was removed in 3.9, but apparently # caused more user trouble than expected. Re-added for 3.9.1 and extended the diff --git a/lib/matplotlib/cm.pyi b/lib/matplotlib/cm.pyi index be8f10b39cb6..40e841d829ab 100644 --- a/lib/matplotlib/cm.pyi +++ b/lib/matplotlib/cm.pyi @@ -18,6 +18,8 @@ class ColormapRegistry(Mapping[str, colors.Colormap]): def get_cmap(self, cmap: str | colors.Colormap) -> colors.Colormap: ... _colormaps: ColormapRegistry = ... +_multivar_colormaps: ColormapRegistry = ... +_bivar_colormaps: ColormapRegistry = ... def get_cmap(name: str | colors.Colormap | None = ..., lut: int | None = ...) -> colors.Colormap: ... diff --git a/lib/matplotlib/colors.py b/lib/matplotlib/colors.py index 5f40e7b0fb9a..7f29861d48e5 100644 --- a/lib/matplotlib/colors.py +++ b/lib/matplotlib/colors.py @@ -54,7 +54,7 @@ import matplotlib as mpl import numpy as np -from matplotlib import _api, _cm, cbook, scale +from matplotlib import _api, _cm, cbook, scale, _image from ._color_data import BASE_COLORS, TABLEAU_COLORS, CSS4_COLORS, XKCD_COLORS @@ -87,6 +87,7 @@ def __delitem__(self, key): _colors_full_map = _ColorMapping(_colors_full_map) _REPR_PNG_SIZE = (512, 64) +_BIVAR_REPR_PNG_SIZE = 256 def get_named_colors_mapping(): @@ -704,6 +705,7 @@ def __init__(self, name, N=256): self._i_over = self.N + 1 self._i_bad = self.N + 2 self._isinit = False + self.n_variates = 1 #: When this colormap exists on a scalar mappable and colorbar_extend #: is not False, colorbar creation will pick up ``colorbar_extend`` as #: the default value for the ``extend`` keyword in the @@ -723,7 +725,7 @@ def __call__(self, X, alpha=None, bytes=False): alpha : float or array-like or None Alpha must be a scalar between 0 and 1, a sequence of such floats with shape matching X, or None. - bytes : bool + bytes : bool, default: False If False (default), the returned RGBA values will be floats in the interval ``[0, 1]`` otherwise they will be `numpy.uint8`\s in the interval ``[0, 255]``. @@ -733,6 +735,36 @@ def __call__(self, X, alpha=None, bytes=False): Tuple of RGBA values if X is scalar, otherwise an array of RGBA values with a shape of ``X.shape + (4, )``. """ + rgba, mask = self._get_rgba_and_mask(X, alpha=alpha, bytes=bytes) + if not np.iterable(X): + rgba = tuple(rgba) + return rgba + + def _get_rgba_and_mask(self, X, alpha=None, bytes=False): + r""" + Parameters + ---------- + X : float or int, `~numpy.ndarray` or scalar + The data value(s) to convert to RGBA. + For floats, *X* should be in the interval ``[0.0, 1.0]`` to + return the RGBA values ``X*100`` percent along the Colormap line. + For integers, *X* should be in the interval ``[0, Colormap.N)`` to + return RGBA values *indexed* from the Colormap with index ``X``. + alpha : float or array-like or None + Alpha must be a scalar between 0 and 1, a sequence of such + floats with shape matching X, or None. + bytes : bool, default: False + If False (default), the returned RGBA values will be floats in the + interval ``[0, 1]`` otherwise they will be `numpy.uint8`\s in the + interval ``[0, 255]``. + + Returns + ------- + colors : np.ndarray + Array of RGBA values with a shape of ``X.shape + (4, )``. + mask : np.ndarray + Boolean array with True where the input is ``np.nan`` or masked. + """ if not self._isinit: self._init() @@ -776,9 +808,7 @@ def __call__(self, X, alpha=None, bytes=False): if (lut[-1] == 0).all(): rgba[mask_bad] = (0, 0, 0, 0) - if not np.iterable(X): - rgba = tuple(rgba) - return rgba + return rgba, mask_bad def __copy__(self): cls = self.__class__ @@ -1226,6 +1256,864 @@ def reversed(self, name=None): return new_cmap +class MultivarColormap: + """ + Class for holding multiple `~matplotlib.colors.Colormap` for use in a + `~matplotlib.cm.ScalarMappable` object + """ + def __init__(self, colormaps, combination_mode, name='multivariate colormap'): + """ + Parameters + ---------- + colormaps: list or tuple of `~matplotlib.colors.Colormap` objects + The individual colormaps that are combined + combination_mode: str, 'sRGB_add' or 'sRGB_sub' + Describe how colormaps are combined in sRGB space + + - If 'sRGB_add' -> Mixing produces brighter colors + `sRGB = sum(colors)` + - If 'sRGB_sub' -> Mixing produces darker colors + `sRGB = 1 - sum(1 - colors)` + name : str, optional + The name of the colormap family. + """ + self.name = name + + if not np.iterable(colormaps) \ + or len(colormaps) == 1 \ + or isinstance(colormaps, str): + raise ValueError("A MultivarColormap must have more than one colormap.") + colormaps = list(colormaps) # ensure cmaps is a list, i.e. not a tuple + for i, cmap in enumerate(colormaps): + if isinstance(cmap, str): + colormaps[i] = mpl.colormaps[cmap] + elif not isinstance(cmap, Colormap): + raise ValueError("colormaps must be a list of objects that subclass" + " Colormap or a name found in the colormap registry.") + + self._colormaps = colormaps + _api.check_in_list(['sRGB_add', 'sRGB_sub'], combination_mode=combination_mode) + self._combination_mode = combination_mode + self.n_variates = len(colormaps) + self._rgba_bad = (0.0, 0.0, 0.0, 0.0) # If bad, don't paint anything. + + def __call__(self, X, alpha=None, bytes=False, clip=True): + r""" + Parameters + ---------- + X : tuple (X0, X1, ...) of length equal to the number of colormaps + X0, X1 ...: + float or int, `~numpy.ndarray` or scalar + The data value(s) to convert to RGBA. + For floats, *Xi...* should be in the interval ``[0.0, 1.0]`` to + return the RGBA values ``X*100`` percent along the Colormap line. + For integers, *Xi...* should be in the interval ``[0, self[i].N)`` to + return RGBA values *indexed* from colormap [i] with index ``Xi``, where + self[i] is colormap i. + alpha : float or array-like or None + Alpha must be a scalar between 0 and 1, a sequence of such + floats with shape matching *Xi*, or None. + bytes : bool, default: False + If False (default), the returned RGBA values will be floats in the + interval ``[0, 1]`` otherwise they will be `numpy.uint8`\s in the + interval ``[0, 255]``. + clip : bool, default: True + If True, clip output to 0 to 1 + + Returns + ------- + Tuple of RGBA values if X[0] is scalar, otherwise an array of + RGBA values with a shape of ``X.shape + (4, )``. + """ + + if len(X) != len(self): + raise ValueError( + f'For the selected colormap the data must have a first dimension ' + f'{len(self)}, not {len(X)}') + rgba, mask_bad = self[0]._get_rgba_and_mask(X[0], bytes=False) + for c, xx in zip(self[1:], X[1:]): + sub_rgba, sub_mask_bad = c._get_rgba_and_mask(xx, bytes=False) + rgba[..., :3] += sub_rgba[..., :3] # add colors + rgba[..., 3] *= sub_rgba[..., 3] # multiply alpha + mask_bad |= sub_mask_bad + + if self.combination_mode == 'sRGB_sub': + rgba[..., :3] -= len(self) - 1 + + rgba[mask_bad] = self.get_bad() + + if clip: + rgba = np.clip(rgba, 0, 1) + + if alpha is not None: + if clip: + alpha = np.clip(alpha, 0, 1) + if np.shape(alpha) not in [(), np.shape(X[0])]: + raise ValueError( + f"alpha is array-like but its shape {np.shape(alpha)} does " + f"not match that of X[0] {np.shape(X[0])}") + rgba[..., -1] *= alpha + + if bytes: + if not clip: + raise ValueError( + "clip cannot be false while bytes is true" + " as uint8 does not support values below 0" + " or above 255.") + rgba = (rgba * 255).astype('uint8') + + if not np.iterable(X[0]): + rgba = tuple(rgba) + + return rgba + + def copy(self): + """Return a copy of the multivarcolormap.""" + return self.__copy__() + + def __copy__(self): + cls = self.__class__ + cmapobject = cls.__new__(cls) + cmapobject.__dict__.update(self.__dict__) + cmapobject._colormaps = [cm.copy() for cm in self._colormaps] + cmapobject._rgba_bad = np.copy(self._rgba_bad) + return cmapobject + + def __eq__(self, other): + if not isinstance(other, MultivarColormap): + return False + if len(self) != len(other): + return False + for c0, c1 in zip(self, other): + if c0 != c1: + return False + if not all(self._rgba_bad == other._rgba_bad): + return False + if self.combination_mode != other.combination_mode: + return False + return True + + def __getitem__(self, item): + return self._colormaps[item] + + def __iter__(self): + for c in self._colormaps: + yield c + + def __len__(self): + return len(self._colormaps) + + def __str__(self): + return self.name + + def get_bad(self): + """Get the color for masked values.""" + return np.array(self._rgba_bad) + + def resampled(self, lutshape): + """ + Return a new colormap with *lutshape* entries. + + Parameters + ---------- + lutshape : tuple of (`int`, `None`) + The tuple must have a length matching the number of variates. + For each element in the tuple, if `int`, the corresponding colorbar + is resampled, if `None`, the corresponding colorbar is not resampled. + + Returns + ------- + MultivarColormap + """ + + if not np.iterable(lutshape) or len(lutshape) != len(self): + raise ValueError(f"lutshape must be of length {len(self)}") + new_cmap = self.copy() + for i, s in enumerate(lutshape): + if s is not None: + new_cmap._colormaps[i] = self[i].resampled(s) + return new_cmap + + def with_extremes(self, *, bad=None, under=None, over=None): + """ + Return a copy of the `MultivarColormap` with modified out-of-range attributes. + + The *bad* keyword modifies the copied `MultivarColormap` while *under* and + *over* modifies the attributes of the copied component colormaps. + Note that *under* and *over* colors are subject to the mixing rules determined + by the *combination_mode*. + + Parameters + ---------- + bad: :mpltype:`color`, default: None + If Matplotlib color, the bad value is set accordingly in the copy + + under tuple of :mpltype:`color`, default: None + If tuple, the `under` value of each component is set with the values + from the tuple. + + over tuple of :mpltype:`color`, default: None + If tuple, the `over` value of each component is set with the values + from the tuple. + + Returns + ------- + MultivarColormap + copy of self with attributes set + + """ + new_cm = self.copy() + if bad is not None: + new_cm._rgba_bad = to_rgba(bad) + if under is not None: + if not np.iterable(under) or len(under) != len(new_cm): + raise ValueError("*under* must contain a color for each scalar colormap" + f" i.e. be of length {len(new_cm)}.") + else: + for c, b in zip(new_cm, under): + c.set_under(b) + if over is not None: + if not np.iterable(over) or len(over) != len(new_cm): + raise ValueError("*over* must contain a color for each scalar colormap" + f" i.e. be of length {len(new_cm)}.") + else: + for c, b in zip(new_cm, over): + c.set_over(b) + return new_cm + + @property + def combination_mode(self): + return self._combination_mode + + def _repr_png_(self): + """Generate a PNG representation of the Colormap.""" + X = np.tile(np.linspace(0, 1, _REPR_PNG_SIZE[0]), + (_REPR_PNG_SIZE[1], 1)) + pixels = np.zeros((_REPR_PNG_SIZE[1]*len(self), _REPR_PNG_SIZE[0], 4), + dtype=np.uint8) + for i, c in enumerate(self): + pixels[i*_REPR_PNG_SIZE[1]:(i+1)*_REPR_PNG_SIZE[1], :] = c(X, bytes=True) + png_bytes = io.BytesIO() + title = self.name + ' multivariate colormap' + author = f'Matplotlib v{mpl.__version__}, https://matplotlib.org' + pnginfo = PngInfo() + pnginfo.add_text('Title', title) + pnginfo.add_text('Description', title) + pnginfo.add_text('Author', author) + pnginfo.add_text('Software', author) + Image.fromarray(pixels).save(png_bytes, format='png', pnginfo=pnginfo) + return png_bytes.getvalue() + + def _repr_html_(self): + """Generate an HTML representation of the MultivarColormap.""" + return ''.join([c._repr_html_() for c in self._colormaps]) + + +class BivarColormap: + """ + Base class for all bivariate to RGBA mappings. + + Designed as a drop-in replacement for Colormap when using a 2D + lookup table. To be used with `~matplotlib.cm.ScalarMappable`. + """ + + def __init__(self, N=256, M=256, shape='square', origin=(0, 0), + name='bivariate colormap'): + """ + Parameters + ---------- + N : int, default: 256 + The number of RGB quantization levels along the first axis. + M : int, default: 256 + The number of RGB quantization levels along the second axis. + shape : {'square', 'circle', 'ignore', 'circleignore'} + + - 'square' each variate is clipped to [0,1] independently + - 'circle' the variates are clipped radially to the center + of the colormap, and a circular mask is applied when the colormap + is displayed + - 'ignore' the variates are not clipped, but instead assigned the + 'outside' color + - 'circleignore' a circular mask is applied, but the data is not + clipped and instead assigned the 'outside' color + + origin : (float, float), default: (0,0) + The relative origin of the colormap. Typically (0, 0), for colormaps + that are linear on both axis, and (.5, .5) for circular colormaps. + Used when getting 1D colormaps from 2D colormaps. + name : str, optional + The name of the colormap. + """ + + self.name = name + self.N = int(N) # ensure that N is always int + self.M = int(M) + _api.check_in_list(['square', 'circle', 'ignore', 'circleignore'], shape=shape) + self._shape = shape + self._rgba_bad = (0.0, 0.0, 0.0, 0.0) # If bad, don't paint anything. + self._rgba_outside = (1.0, 0.0, 1.0, 1.0) + self._isinit = False + self.n_variates = 2 + self._origin = (float(origin[0]), float(origin[1])) + '''#: When this colormap exists on a scalar mappable and colorbar_extend + #: is not False, colorbar creation will pick up ``colorbar_extend`` as + #: the default value for the ``extend`` keyword in the + #: `matplotlib.colorbar.Colorbar` constructor. + self.colorbar_extend = False''' + + def __call__(self, X, alpha=None, bytes=False): + r""" + Parameters + ---------- + X : tuple (X0, X1), X0 and X1: float or int `~numpy.ndarray` or scalar + The data value(s) to convert to RGBA. + + - For floats, *X* should be in the interval ``[0.0, 1.0]`` to + return the RGBA values ``X*100`` percent along the Colormap. + - For integers, *X* should be in the interval ``[0, Colormap.N)`` to + return RGBA values *indexed* from the Colormap with index ``X``. + + alpha : float or array-like or None, default: None + Alpha must be a scalar between 0 and 1, a sequence of such + floats with shape matching X0, or None. + bytes : bool, default: False + If False (default), the returned RGBA values will be floats in the + interval ``[0, 1]`` otherwise they will be `numpy.uint8`\s in the + interval ``[0, 255]``. + + Returns + ------- + Tuple of RGBA values if X is scalar, otherwise an array of + RGBA values with a shape of ``X.shape + (4, )``. + """ + + if len(X) != 2: + raise ValueError( + f'For a `BivarColormap` the data must have a first dimension ' + f'2, not {len(X)}') + + if not self._isinit: + self._init() + + X0 = np.ma.array(X[0], copy=True) + X1 = np.ma.array(X[1], copy=True) + # clip to shape of colormap, circle square, etc. + self._clip((X0, X1)) + + # Native byteorder is faster. + if not X0.dtype.isnative: + X0 = X0.byteswap().view(X0.dtype.newbyteorder()) + if not X1.dtype.isnative: + X1 = X1.byteswap().view(X1.dtype.newbyteorder()) + + if X0.dtype.kind == "f": + X0 *= self.N + # xa == 1 (== N after multiplication) is not out of range. + X0[X0 == self.N] = self.N - 1 + + if X1.dtype.kind == "f": + X1 *= self.M + # xa == 1 (== N after multiplication) is not out of range. + X1[X1 == self.M] = self.M - 1 + + # Pre-compute the masks before casting to int (which can truncate) + mask_outside = (X0 < 0) | (X1 < 0) | (X0 >= self.N) | (X1 >= self.M) + # If input was masked, get the bad mask from it; else mask out nans. + mask_bad_0 = X0.mask if np.ma.is_masked(X0) else np.isnan(X0) + mask_bad_1 = X1.mask if np.ma.is_masked(X1) else np.isnan(X1) + mask_bad = mask_bad_0 | mask_bad_1 + + with np.errstate(invalid="ignore"): + # We need this cast for unsigned ints as well as floats + X0 = X0.astype(int) + X1 = X1.astype(int) + + # Set masked values to zero + # The corresponding rgb values will be replaced later + for X_part in [X0, X1]: + X_part[mask_outside] = 0 + X_part[mask_bad] = 0 + + rgba = self._lut[X0, X1] + if np.isscalar(X[0]): + rgba = np.copy(rgba) + rgba[mask_outside] = self._rgba_outside + rgba[mask_bad] = self._rgba_bad + if bytes: + rgba = (rgba * 255).astype(np.uint8) + if alpha is not None: + alpha = np.clip(alpha, 0, 1) + if bytes: + alpha *= 255 # Will be cast to uint8 upon assignment. + if np.shape(alpha) not in [(), np.shape(X0)]: + raise ValueError( + f"alpha is array-like but its shape {np.shape(alpha)} does " + f"not match that of X[0] {np.shape(X0)}") + rgba[..., -1] = alpha + # If the "bad" color is all zeros, then ignore alpha input. + if (np.array(self._rgba_bad) == 0).all(): + rgba[mask_bad] = (0, 0, 0, 0) + + if not np.iterable(X[0]): + rgba = tuple(rgba) + return rgba + + @property + def lut(self): + """ + For external access to the lut, i.e. for displaying the cmap. + For circular colormaps this returns a lut with a circular mask. + + Internal functions (such as to_rgb()) should use _lut + which stores the lut without a circular mask + A lut without the circular mask is needed in to_rgb() because the + conversion from floats to ints results in some some pixel-requests + just outside of the circular mask + + """ + if not self._isinit: + self._init() + lut = np.copy(self._lut) + if self.shape == 'circle' or self.shape == 'circleignore': + n = np.linspace(-1, 1, self.N) + m = np.linspace(-1, 1, self.M) + radii_sqr = (n**2)[:, np.newaxis] + (m**2)[np.newaxis, :] + mask_outside = radii_sqr > 1 + lut[mask_outside, 3] = 0 + return lut + + def __copy__(self): + cls = self.__class__ + cmapobject = cls.__new__(cls) + cmapobject.__dict__.update(self.__dict__) + + cmapobject._rgba_outside = np.copy(self._rgba_outside) + cmapobject._rgba_bad = np.copy(self._rgba_bad) + cmapobject._shape = self.shape + if self._isinit: + cmapobject._lut = np.copy(self._lut) + return cmapobject + + def __eq__(self, other): + if not isinstance(other, BivarColormap): + return False + # To compare lookup tables the Colormaps have to be initialized + if not self._isinit: + self._init() + if not other._isinit: + other._init() + if not np.array_equal(self._lut, other._lut): + return False + if not np.array_equal(self._rgba_bad, other._rgba_bad): + return False + if not np.array_equal(self._rgba_outside, other._rgba_outside): + return False + if self.shape != other.shape: + return False + return True + + def get_bad(self): + """Get the color for masked values.""" + return self._rgba_bad + + def get_outside(self): + """Get the color for out-of-range values.""" + return self._rgba_outside + + def resampled(self, lutshape, transposed=False): + """ + Return a new colormap with *lutshape* entries. + + Note that this function does not move the origin. + + Parameters + ---------- + lutshape : tuple of ints or None + The tuple must be of length 2, and each entry is either an int or None. + + - If an int, the corresponding axis is resampled. + - If negative the corresponding axis is resampled in reverse + - If -1, the axis is inverted + - If 1 or None, the corresponding axis is not resampled. + + transposed : bool, default: False + if True, the axes are swapped after resampling + + Returns + ------- + BivarColormap + """ + + if not np.iterable(lutshape) or len(lutshape) != 2: + raise ValueError("lutshape must be of length 2") + lutshape = [lutshape[0], lutshape[1]] + if lutshape[0] is None or lutshape[0] == 1: + lutshape[0] = self.N + if lutshape[1] is None or lutshape[1] == 1: + lutshape[1] = self.M + + inverted = [False, False] + if lutshape[0] < 0: + inverted[0] = True + lutshape[0] = -lutshape[0] + if lutshape[0] == 1: + lutshape[0] = self.N + if lutshape[1] < 0: + inverted[1] = True + lutshape[1] = -lutshape[1] + if lutshape[1] == 1: + lutshape[1] = self.M + x_0, x_1 = np.mgrid[0:1:(lutshape[0] * 1j), 0:1:(lutshape[1] * 1j)] + if inverted[0]: + x_0 = x_0[::-1, :] + if inverted[1]: + x_1 = x_1[:, ::-1] + + # we need to use shape = 'square' while resampling the colormap. + # if the colormap has shape = 'circle' we would otherwise get *outside* in the + # resampled colormap + shape_memory = self._shape + self._shape = 'square' + if transposed: + new_lut = self((x_1, x_0)) + new_cmap = BivarColormapFromImage(new_lut, name=self.name, + shape=shape_memory, + origin=self.origin[::-1]) + else: + new_lut = self((x_0, x_1)) + new_cmap = BivarColormapFromImage(new_lut, name=self.name, + shape=shape_memory, + origin=self.origin) + self._shape = shape_memory + + new_cmap._rgba_bad = self._rgba_bad + new_cmap._rgba_outside = self._rgba_outside + return new_cmap + + def reversed(self, axis_0=True, axis_1=True): + """ + Reverses both or one of the axis. + """ + r_0 = -1 if axis_0 else 1 + r_1 = -1 if axis_1 else 1 + return self.resampled((r_0, r_1)) + + def transposed(self): + """ + Transposes the colormap by swapping the order of the axis + """ + return self.resampled((None, None), transposed=True) + + def with_extremes(self, *, bad=None, outside=None, shape=None, origin=None): + """ + Return a copy of the `BivarColormap` with modified attributes. + + Note that the *outside* color is only relevant if `shape` = 'ignore' + or 'circleignore'. + + Parameters + ---------- + bad : None or :mpltype:`color` + If Matplotlib color, the *bad* value is set accordingly in the copy + + outside : None or :mpltype:`color` + If Matplotlib color and shape is 'ignore' or 'circleignore', values + *outside* the colormap are colored accordingly in the copy + + shape : {'square', 'circle', 'ignore', 'circleignore'} + + - If 'square' each variate is clipped to [0,1] independently + - If 'circle' the variates are clipped radially to the center + of the colormap, and a circular mask is applied when the colormap + is displayed + - If 'ignore' the variates are not clipped, but instead assigned the + *outside* color + - If 'circleignore' a circular mask is applied, but the data is not + clipped and instead assigned the *outside* color + + origin : (float, float) + The relative origin of the colormap. Typically (0, 0), for colormaps + that are linear on both axis, and (.5, .5) for circular colormaps. + Used when getting 1D colormaps from 2D colormaps. + + Returns + ------- + BivarColormap + copy of self with attributes set + """ + new_cm = self.copy() + if bad is not None: + new_cm._rgba_bad = to_rgba(bad) + if outside is not None: + new_cm._rgba_outside = to_rgba(outside) + if shape is not None: + _api.check_in_list(['square', 'circle', 'ignore', 'circleignore'], + shape=shape) + new_cm._shape = shape + if origin is not None: + new_cm._origin = (float(origin[0]), float(origin[1])) + + return new_cm + + def _init(self): + """Generate the lookup table, ``self._lut``.""" + raise NotImplementedError("Abstract class only") + + @property + def shape(self): + return self._shape + + @property + def origin(self): + return self._origin + + def _clip(self, X): + """ + For internal use when applying a BivarColormap to data. + i.e. cm.ScalarMappable().to_rgba() + Clips X[0] and X[1] according to 'self.shape'. + X is modified in-place. + + Parameters + ---------- + X: np.array + array of floats or ints to be clipped + shape : {'square', 'circle', 'ignore', 'circleignore'} + + - If 'square' each variate is clipped to [0,1] independently + - If 'circle' the variates are clipped radially to the center + of the colormap. + It is assumed that a circular mask is applied when the colormap + is displayed + - If 'ignore' the variates are not clipped, but instead assigned the + 'outside' color + - If 'circleignore' a circular mask is applied, but the data is not clipped + and instead assigned the 'outside' color + + """ + if self.shape == 'square': + for X_part, mx in zip(X, (self.N, self.M)): + X_part[X_part < 0] = 0 + if X_part.dtype.kind == "f": + X_part[X_part > 1] = 1 + else: + X_part[X_part >= mx] = mx - 1 + + elif self.shape == 'ignore': + for X_part, mx in zip(X, (self.N, self.M)): + X_part[X_part < 0] = -1 + if X_part.dtype.kind == "f": + X_part[X_part > 1] = -1 + else: + X_part[X_part >= mx] = -1 + + elif self.shape == 'circle' or self.shape == 'circleignore': + for X_part in X: + if X_part.dtype.kind != "f": + raise NotImplementedError( + "Circular bivariate colormaps are only" + " implemented for use with with floats") + radii_sqr = (X[0] - 0.5)**2 + (X[1] - 0.5)**2 + mask_outside = radii_sqr > 0.25 + if self.shape == 'circle': + overextend = 2 * np.sqrt(radii_sqr[mask_outside]) + X[0][mask_outside] = (X[0][mask_outside] - 0.5) / overextend + 0.5 + X[1][mask_outside] = (X[1][mask_outside] - 0.5) / overextend + 0.5 + else: + X[0][mask_outside] = -1 + X[1][mask_outside] = -1 + + def __getitem__(self, item): + """Creates and returns a colorbar along the selected axis""" + if not self._isinit: + self._init() + if item == 0: + origin_1_as_int = int(self._origin[1]*self.M) + if origin_1_as_int > self.M-1: + origin_1_as_int = self.M-1 + one_d_lut = self._lut[:, origin_1_as_int] + new_cmap = ListedColormap(one_d_lut, name=f'{self.name}_0', N=self.N) + + elif item == 1: + origin_0_as_int = int(self._origin[0]*self.N) + if origin_0_as_int > self.N-1: + origin_0_as_int = self.N-1 + one_d_lut = self._lut[origin_0_as_int, :] + new_cmap = ListedColormap(one_d_lut, name=f'{self.name}_1', N=self.M) + else: + raise KeyError(f"only 0 or 1 are" + f" valid keys for BivarColormap, not {item!r}") + new_cmap._rgba_bad = self._rgba_bad + if self.shape in ['ignore', 'circleignore']: + new_cmap.set_over(self._rgba_outside) + new_cmap.set_under(self._rgba_outside) + return new_cmap + + def _repr_png_(self): + """Generate a PNG representation of the BivarColormap.""" + if not self._isinit: + self._init() + pixels = self.lut + if pixels.shape[0] < _BIVAR_REPR_PNG_SIZE: + pixels = np.repeat(pixels, + repeats=_BIVAR_REPR_PNG_SIZE//pixels.shape[0], + axis=0)[:256, :] + if pixels.shape[1] < _BIVAR_REPR_PNG_SIZE: + pixels = np.repeat(pixels, + repeats=_BIVAR_REPR_PNG_SIZE//pixels.shape[1], + axis=1)[:, :256] + pixels = (pixels[::-1, :, :] * 255).astype(np.uint8) + png_bytes = io.BytesIO() + title = self.name + ' BivarColormap' + author = f'Matplotlib v{mpl.__version__}, https://matplotlib.org' + pnginfo = PngInfo() + pnginfo.add_text('Title', title) + pnginfo.add_text('Description', title) + pnginfo.add_text('Author', author) + pnginfo.add_text('Software', author) + Image.fromarray(pixels).save(png_bytes, format='png', pnginfo=pnginfo) + return png_bytes.getvalue() + + def _repr_html_(self): + """Generate an HTML representation of the Colormap.""" + png_bytes = self._repr_png_() + png_base64 = base64.b64encode(png_bytes).decode('ascii') + def color_block(color): + hex_color = to_hex(color, keep_alpha=True) + return (f'
') + + return ('