diff --git a/examples/color/colormaps_reference.py b/examples/color/colormaps_reference.py index e7ff56dea745..9f2c87e4a661 100644 --- a/examples/color/colormaps_reference.py +++ b/examples/color/colormaps_reference.py @@ -51,7 +51,8 @@ 'RdBu', 'RdGy', 'RdYlBu', 'RdYlGn', 'Spectral', 'seismic']), ('Qualitative', ['Accent', 'Dark2', 'Paired', 'Pastel1', - 'Pastel2', 'Set1', 'Set2', 'Set3']), + 'Pastel2', 'Set1', 'Set2', 'Set3', 'Vega10', + 'Vega20', 'Vega20b', 'Vega20c']), ('Miscellaneous', ['gist_earth', 'terrain', 'ocean', 'gist_stern', 'brg', 'CMRmap', 'cubehelix', 'gnuplot', 'gnuplot2', 'gist_ncar', diff --git a/lib/matplotlib/_cm.py b/lib/matplotlib/_cm.py index 3df87a44dd0f..57df2009a129 100644 --- a/lib/matplotlib/_cm.py +++ b/lib/matplotlib/_cm.py @@ -1277,6 +1277,94 @@ def gfunc32(x): } +# Categorical palettes from Vega: +# https://github.com/vega/vega/wiki/Scales +# (divided by 255) +# + +_Vega10_data = ( + (0.12156862745098039, 0.4666666666666667, 0.7058823529411765 ), # 1f77b4 + (1.0, 0.4980392156862745, 0.054901960784313725), # ff7f0e + (0.17254901960784313, 0.6274509803921569, 0.17254901960784313 ), # 2ca02c + (0.8392156862745098, 0.15294117647058825, 0.1568627450980392 ), # d62728 + (0.5803921568627451, 0.403921568627451, 0.7411764705882353 ), # 9467bd + (0.5490196078431373, 0.33725490196078434, 0.29411764705882354 ), # 8c564b + (0.8901960784313725, 0.4666666666666667, 0.7607843137254902 ), # e377c2 + (0.4980392156862745, 0.4980392156862745, 0.4980392156862745 ), # 7f7f7f + (0.7372549019607844, 0.7411764705882353, 0.13333333333333333 ), # bcbd22 + (0.09019607843137255, 0.7450980392156863, 0.8117647058823529), # 17becf + ) + +_Vega20_data = ( + (0.12156862745098039, 0.4666666666666667, 0.7058823529411765 ), # 1f77b4 + (0.6823529411764706, 0.7803921568627451, 0.9098039215686274 ), # aec7e8 + (1.0, 0.4980392156862745, 0.054901960784313725), # ff7f0e + (1.0, 0.7333333333333333, 0.47058823529411764 ), # ffbb78 + (0.17254901960784313, 0.6274509803921569, 0.17254901960784313 ), # 2ca02c + (0.596078431372549, 0.8745098039215686, 0.5411764705882353 ), # 98df8a + (0.8392156862745098, 0.15294117647058825, 0.1568627450980392 ), # d62728 + (1.0, 0.596078431372549, 0.5882352941176471 ), # ff9896 + (0.5803921568627451, 0.403921568627451, 0.7411764705882353 ), # 9467bd + (0.7725490196078432, 0.6901960784313725, 0.8352941176470589 ), # c5b0d5 + (0.5490196078431373, 0.33725490196078434, 0.29411764705882354 ), # 8c564b + (0.7686274509803922, 0.611764705882353, 0.5803921568627451 ), # c49c94 + (0.8901960784313725, 0.4666666666666667, 0.7607843137254902 ), # e377c2 + (0.9686274509803922, 0.7137254901960784, 0.8235294117647058 ), # f7b6d2 + (0.4980392156862745, 0.4980392156862745, 0.4980392156862745 ), # 7f7f7f + (0.7803921568627451, 0.7803921568627451, 0.7803921568627451 ), # c7c7c7 + (0.7372549019607844, 0.7411764705882353, 0.13333333333333333 ), # bcbd22 + (0.8588235294117647, 0.8588235294117647, 0.5529411764705883 ), # dbdb8d + (0.09019607843137255, 0.7450980392156863, 0.8117647058823529 ), # 17becf + (0.6196078431372549, 0.8549019607843137, 0.8980392156862745), # 9edae5 + ) + +_Vega20b_data = ( + (0.2235294117647059, 0.23137254901960785, 0.4745098039215686 ), # 393b79 + (0.3215686274509804, 0.32941176470588235, 0.6392156862745098 ), # 5254a3 + (0.4196078431372549, 0.43137254901960786, 0.8117647058823529 ), # 6b6ecf + (0.611764705882353, 0.6196078431372549, 0.8705882352941177 ), # 9c9ede + (0.38823529411764707, 0.4745098039215686, 0.2235294117647059 ), # 637939 + (0.5490196078431373, 0.6352941176470588, 0.3215686274509804 ), # 8ca252 + (0.7098039215686275, 0.8117647058823529, 0.4196078431372549 ), # b5cf6b + (0.807843137254902, 0.8588235294117647, 0.611764705882353 ), # cedb9c + (0.5490196078431373, 0.42745098039215684, 0.19215686274509805), # 8c6d31 + (0.7411764705882353, 0.6196078431372549, 0.2235294117647059 ), # bd9e39 + (0.9058823529411765, 0.7294117647058823, 0.3215686274509804 ), # e7ba52 + (0.9058823529411765, 0.796078431372549, 0.5803921568627451 ), # e7cb94 + (0.5176470588235295, 0.23529411764705882, 0.2235294117647059 ), # 843c39 + (0.6784313725490196, 0.28627450980392155, 0.2901960784313726 ), # ad494a + (0.8392156862745098, 0.3803921568627451, 0.4196078431372549 ), # d6616b + (0.9058823529411765, 0.5882352941176471, 0.611764705882353 ), # e7969c + (0.4823529411764706, 0.2549019607843137, 0.45098039215686275), # 7b4173 + (0.6470588235294118, 0.3176470588235294, 0.5803921568627451 ), # a55194 + (0.807843137254902, 0.42745098039215684, 0.7411764705882353 ), # ce6dbd + (0.8705882352941177, 0.6196078431372549, 0.8392156862745098 ), # de9ed6 + ) + +_Vega20c_data = ( + (0.19215686274509805, 0.5098039215686274, 0.7411764705882353 ), # 3182bd + (0.4196078431372549, 0.6823529411764706, 0.8392156862745098 ), # 6baed6 + (0.6196078431372549, 0.792156862745098, 0.8823529411764706 ), # 9ecae1 + (0.7764705882352941, 0.8588235294117647, 0.9372549019607843 ), # c6dbef + (0.9019607843137255, 0.3333333333333333, 0.050980392156862744), # e6550d + (0.9921568627450981, 0.5529411764705883, 0.23529411764705882 ), # fd8d3c + (0.9921568627450981, 0.6823529411764706, 0.4196078431372549 ), # fdae6b + (0.9921568627450981, 0.8156862745098039, 0.6352941176470588 ), # fdd0a2 + (0.19215686274509805, 0.6392156862745098, 0.32941176470588235 ), # 31a354 + (0.4549019607843137, 0.7686274509803922, 0.4627450980392157 ), # 74c476 + (0.6313725490196078, 0.8509803921568627, 0.6078431372549019 ), # a1d99b + (0.7803921568627451, 0.9137254901960784, 0.7529411764705882 ), # c7e9c0 + (0.4588235294117647, 0.4196078431372549, 0.6941176470588235 ), # 756bb1 + (0.6196078431372549, 0.6039215686274509, 0.7843137254901961 ), # 9e9ac8 + (0.7372549019607844, 0.7411764705882353, 0.8627450980392157 ), # bcbddc + (0.8549019607843137, 0.8549019607843137, 0.9215686274509803 ), # dadaeb + (0.38823529411764707, 0.38823529411764707, 0.38823529411764707 ), # 636363 + (0.5882352941176471, 0.5882352941176471, 0.5882352941176471 ), # 969696 + (0.7411764705882353, 0.7411764705882353, 0.7411764705882353 ), # bdbdbd + (0.8509803921568627, 0.8509803921568627, 0.8509803921568627 ), # d9d9d9 + ) + + datad = { 'afmhot': _afmhot_data, 'autumn': _autumn_data, @@ -1358,3 +1446,8 @@ def gfunc32(x): datad['Set1'] = {'listed': _Set1_data} datad['Set2'] = {'listed': _Set2_data} datad['Set3'] = {'listed': _Set3_data} + +datad['Vega10'] = {'listed': _Vega10_data} +datad['Vega20'] = {'listed': _Vega20_data} +datad['Vega20b'] = {'listed': _Vega20b_data} +datad['Vega20c'] = {'listed': _Vega20c_data}