Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Commit c33dc4c

Browse files
author
nd1511
committed
Python, PyCharm IDE
Python, PyCharm IDE
1 parent 6ad0982 commit c33dc4c

File tree

1 file changed

+26
-26
lines changed

1 file changed

+26
-26
lines changed

program45_SGD_GANs.py

Lines changed: 26 additions & 26 deletions
Original file line numberDiff line numberDiff line change
@@ -1,29 +1,34 @@
11
from __future__ import print_function
22
from __future__ import absolute_import
33

4-
# use: https://github.com/tensorflow/docs/blob/master/site/en/r1/tutorials/sequences/audio_recognition.md
5-
# https://github.com/tensorflow/docs/blob/master/site/en/r1/tutorials/sequences/audio_recognition.md
6-
# we now use: https://www.youtube.com/watch?v=9dXiAecyJrY&feature=youtu.be&t=13874
4+
# https://medium.com/startup-grind/fueling-the-ai-gold-rush-7ae438505bc2
5+
# https://www.analyticsinsight.net/best-computer-vision-courses-to-master-in-2019/
6+
# UCI data: https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
7+
# Human Activity Recognition Using Smartphones Data Set, archive.ics.uci.edu, Human Activity Recognition
8+
# https://www.cfasociety.org/cleveland/Lists/Events%20Calendar/Attachments/1045/BIG-Data_AI-JPMmay2017.pdf
79

810
import numpy as np
11+
import numpy.random
912
import pandas as pd
10-
import sys, sklearn
1113

12-
import numpy.random
14+
import sys, sklearn
1315
import scipy.stats as ss
1416
import os, tarfile, errno
1517
import matplotlib.pyplot as plt
1618

19+
# https://www.cmegroup.com/education/files/jpm-momentum-strategies-2015-04-15-1681565.pdf
20+
# https://faculty.sites.uci.edu/pjorion/files/2018/05/JPM-2017-MachineLearningInvestments.pdf
21+
# we use: https://www.cmegroup.com/education/files/jpm-momentum-strategies-2015-04-15-1681565.pdf
22+
# https://www.cfasociety.org/cleveland/Lists/Events%20Calendar/Attachments/1045/BIG-Data_AI-JPMmay2017.pdf
23+
1724
import tensorflow as tf
1825
print(tf.__version__) # 1.14.0
1926
import matplotlib.pyplot as plt
2027
import seaborn as sns; sns.set()
2128

22-
# https://medium.com/startup-grind/fueling-the-ai-gold-rush-7ae438505bc2
23-
# https://www.analyticsinsight.net/best-computer-vision-courses-to-master-in-2019/
24-
# UCI data: https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
25-
# Human Activity Recognition Using Smartphones Data Set, archive.ics.uci.edu, Human Activity Recognition
26-
# https://www.cfasociety.org/cleveland/Lists/Events%20Calendar/Attachments/1045/BIG-Data_AI-JPMmay2017.pdf
29+
# use: https://github.com/tensorflow/docs/blob/master/site/en/r1/tutorials/sequences/audio_recognition.md
30+
# https://github.com/tensorflow/docs/blob/master/site/en/r1/tutorials/sequences/audio_recognition.md
31+
# we now use: https://www.youtube.com/watch?v=9dXiAecyJrY&feature=youtu.be&t=13874
2732

2833
if sys.version_info >= (3, 0, 0):
2934
import urllib.request as urllib
@@ -68,24 +73,23 @@
6873
from matplotlib import pyplot as plt
6974
import torchvision.transforms as transforms
7075

71-
#import renom as rm
72-
from copy import deepcopy
73-
import matplotlib.pyplot as plt
74-
7576
import numpy as np
77+
#import renom as rm
7678
import tensorflow as tf
79+
from copy import deepcopy
7780
from keras.layers import Dense
81+
import matplotlib.pyplot as plt
7882
from keras.datasets import mnist
7983
from keras.models import Sequential
8084

8185
# https://www.renom.jp/notebooks/tutorial/generative-model/anoGAN/notebook.html
8286
# use: https://www.renom.jp/notebooks/tutorial/generative-model/anoGAN/notebook.html
8387

84-
import external.renom as rm
88+
import externals.renom as rm
8589
#from renom.optimizer import Adam
8690
#from renom.cuda import set_cuda_active
87-
from external.renom.optimizer import Adam
88-
from external.renom.cuda import set_cuda_active
91+
from externals.renom.optimizer import Adam
92+
from externals.renom.cuda import set_cuda_active
8993

9094
# MNIST: Keras or scikit-learn embedded datasets
9195
# Keras: from keras.datasets import mnist
@@ -274,7 +278,7 @@ def forward(self, X):
274278
return y4
275279

276280
# Backward propagation
277-
def backward(self, X, l, y4):
281+
def backward(self, X, l, y4): # Back, Backward
278282
# Derivative of binary cross entropy cost w.r.t. final output y4
279283
self.dC_dy4 = y4 - l
280284

@@ -435,9 +439,8 @@ def train(self, epochs, batch_size=128, save_interval=50):
435439
idx = np.random.randint(0, X_train.shape[0], half_batch)
436440
imgs = X_train[idx]
437441

442+
# Generator => Generate a half batch of new images
438443
noise = np.random.normal(0, 1, (half_batch, 100))
439-
440-
# Generate a half batch of new images
441444
gen_imgs = self.generator.predict(noise)
442445

443446
# Train the Discriminator
@@ -1586,10 +1589,8 @@ def define_discriminator(in_shape=(32, 32, 3)):
15861589
# we use: https://machinelearningmastery.com/how-to-develop-a-generative-adversarial-network-for-a-cifar-10-small-object-photographs-from-scratch/
15871590

15881591
(trainX, _), (_, _) = load_data() # load the CIFAR-10 dataset
1589-
X = trainX.astype('float32') # convert from unsigned ints to floats
1590-
1591-
# scale from [0,255] to [-1,1]
1592-
X = (X - 127.5) / 127.5
1592+
X = trainX.astype('float32') # convert from ints to floats
1593+
X = (X - 127.5) / 127.5 # scale from [0,255] to [-1,1]
15931594

15941595
# load and prepare CIFAR-10 training images
15951596
def load_real_samples():
@@ -5575,10 +5576,9 @@ def build(width, height, depth, classes):
55755576
# ReLU is the most common activation function. We use ReLU.
55765577
# Mean across a batch. We use batches. Normalize across a batch.
55775578

5579+
# https://github.com/life-efficient/Academy-of-AI/blob/master/Lecture%2013%20-%20Generative%20Models/GANs%20tutorial.ipynb
55785580
# use: https://github.com/life-efficient/Academy-of-AI/blob/master/Lecture%2013%20-%20Generative%20Models/GANs%20tutorial.ipynb
55795581

5580-
5581-
55825582
import torch
55835583
import torchvision
55845584

0 commit comments

Comments
 (0)