Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Commit 02b49b4

Browse files
committed
Removes duplicated docs for python functions
1 parent e145a74 commit 02b49b4

File tree

2 files changed

+2
-241
lines changed

2 files changed

+2
-241
lines changed

doc/source/reference/routines.other.rst

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -52,4 +52,5 @@ Matlab-like Functions
5252
.. autosummary::
5353
:toctree: generated/
5454

55-
who
55+
who
56+
disp

numpy/core/_add_newdocs.py

Lines changed: 0 additions & 240 deletions
Original file line numberDiff line numberDiff line change
@@ -3255,122 +3255,6 @@
32553255
"""))
32563256

32573257

3258-
add_newdoc('numpy.core.multiarray', 'shares_memory',
3259-
"""
3260-
shares_memory(a, b, max_work=None)
3261-
3262-
Determine if two arrays share memory
3263-
3264-
Parameters
3265-
----------
3266-
a, b : ndarray
3267-
Input arrays
3268-
max_work : int, optional
3269-
Effort to spend on solving the overlap problem (maximum number
3270-
of candidate solutions to consider). The following special
3271-
values are recognized:
3272-
3273-
max_work=MAY_SHARE_EXACT (default)
3274-
The problem is solved exactly. In this case, the function returns
3275-
True only if there is an element shared between the arrays.
3276-
max_work=MAY_SHARE_BOUNDS
3277-
Only the memory bounds of a and b are checked.
3278-
3279-
Raises
3280-
------
3281-
numpy.TooHardError
3282-
Exceeded max_work.
3283-
3284-
Returns
3285-
-------
3286-
out : bool
3287-
3288-
See Also
3289-
--------
3290-
may_share_memory
3291-
3292-
Examples
3293-
--------
3294-
>>> np.may_share_memory(np.array([1,2]), np.array([5,8,9]))
3295-
False
3296-
3297-
""")
3298-
3299-
3300-
add_newdoc('numpy.core.multiarray', 'may_share_memory',
3301-
"""
3302-
may_share_memory(a, b, max_work=None)
3303-
3304-
Determine if two arrays might share memory
3305-
3306-
A return of True does not necessarily mean that the two arrays
3307-
share any element. It just means that they *might*.
3308-
3309-
Only the memory bounds of a and b are checked by default.
3310-
3311-
Parameters
3312-
----------
3313-
a, b : ndarray
3314-
Input arrays
3315-
max_work : int, optional
3316-
Effort to spend on solving the overlap problem. See
3317-
`shares_memory` for details. Default for ``may_share_memory``
3318-
is to do a bounds check.
3319-
3320-
Returns
3321-
-------
3322-
out : bool
3323-
3324-
See Also
3325-
--------
3326-
shares_memory
3327-
3328-
Examples
3329-
--------
3330-
>>> np.may_share_memory(np.array([1,2]), np.array([5,8,9]))
3331-
False
3332-
>>> x = np.zeros([3, 4])
3333-
>>> np.may_share_memory(x[:,0], x[:,1])
3334-
True
3335-
3336-
""")
3337-
3338-
3339-
add_newdoc('numpy.lib.utils', 'byte_bounds',
3340-
"""
3341-
byte_bounds(a)
3342-
3343-
Returns pointers to the end-points of an array in the form of tuple
3344-
of two integers. The first integer is the first byte of the array,
3345-
the second integer is just past the last byte of the array.
3346-
3347-
If `a` is not contiguous it will not use every byte between the
3348-
returned integer values.
3349-
3350-
Parameters
3351-
----------
3352-
a : ndarray
3353-
Input array. It must conform to the Python-side of the array
3354-
interface.
3355-
3356-
Returns
3357-
-------
3358-
(low, high) : tuple of 2 integers
3359-
3360-
Examples
3361-
--------
3362-
>>> x = np.array([1,2,4])
3363-
>>> np.byte_bounds(x)
3364-
(32030368, 32030392)
3365-
>>> I = np.eye(2, dtype='f'); I.dtype
3366-
dtype('float32')
3367-
>>> low, high = np.byte_bounds(I)
3368-
>>> high - low == I.size*I.itemsize
3369-
True
3370-
3371-
""")
3372-
3373-
33743258
add_newdoc('numpy.core.multiarray', 'ndarray', ('newbyteorder',
33753259
"""
33763260
arr.newbyteorder(new_order='S')
@@ -4383,53 +4267,6 @@
43834267
[(4, 5)]], dtype=[('width', '<i2'), ('length', '<i2')])
43844268
"""))
43854269

4386-
add_newdoc('numpy.lib.utils', 'who',
4387-
"""
4388-
who(verdict=None)
4389-
4390-
Print the NumPy arrays in the given dictionary.
4391-
4392-
If there is no dictionary passed in or `vardict` is None then returns
4393-
NumPy arrays in the globals() dictionary (all NumPy arrays in the
4394-
namespace).
4395-
4396-
Parameters
4397-
----------
4398-
vardict : dict, optional
4399-
A dictionary possibly containing ndarrays. Default is globals().
4400-
4401-
Returns
4402-
-------
4403-
out : None
4404-
Returns 'None'.
4405-
4406-
Notes
4407-
-----
4408-
Prints out the name, shape, bytes and type of all of the ndarrays
4409-
present in `vardict`.
4410-
4411-
Examples
4412-
--------
4413-
>>> a = np.arange(10)
4414-
>>> b = np.ones(20)
4415-
>>> np.who()
4416-
Name Shape Bytes Type
4417-
===========================================================
4418-
a 10 80 int64
4419-
b 20 160 float64
4420-
Upper bound on total bytes = 240
4421-
4422-
>>> d = {'x': np.arange(2.0), 'y': np.arange(3.0), 'txt': 'Some str',
4423-
... 'idx':5}
4424-
>>> np.who(d)
4425-
Name Shape Bytes Type
4426-
===========================================================
4427-
x 2 16 float64
4428-
y 3 24 float64
4429-
Upper bound on total bytes = 40
4430-
4431-
""")
4432-
44334270

44344271
##############################################################################
44354272
#
@@ -7080,80 +6917,3 @@ def add_newdoc_for_scalar_type(obj, fixed_aliases, doc):
70806917
(-1, 4)
70816918
""".format(ftype=float_name)))
70826919

7083-
##############################################################################
7084-
#
7085-
# Miscellaneous utility routines
7086-
#
7087-
##############################################################################
7088-
7089-
add_newdoc('numpy.lib.utils', 'get_include',
7090-
"""
7091-
7092-
Parameters
7093-
----------
7094-
None
7095-
7096-
Returns
7097-
-------
7098-
Directory that contains the NumPy \\*.h header files.
7099-
7100-
Extension modules that need to compile against NumPy should use this
7101-
function to locate the appropriate include directory.
7102-
7103-
""")
7104-
7105-
add_newdoc('numpy.lib.utils', 'deprecate',
7106-
"""
7107-
7108-
deprecate(func, old_name, new_name, message)
7109-
7110-
Parameters
7111-
----------
7112-
func : function
7113-
The function to be deprecated.
7114-
old_name : str, optional
7115-
The name of the function to be deprecated. Default is None, in
7116-
which case the name of `func` is used.
7117-
new_name : str, optional
7118-
The new name for the function. Default is None, in which case the
7119-
deprecation message is that `old_name` is deprecated. If given, the
7120-
deprecation message is that `old_name` is deprecated and `new_name`
7121-
should be used instead.
7122-
message : str, optional
7123-
Additional explanation of the deprecation. Displayed in the
7124-
docstring after the warning.
7125-
7126-
Returns
7127-
-------
7128-
old_func : function
7129-
The deprecated function.
7130-
7131-
Examples
7132-
--------
7133-
Note that ``olduint`` returns a value after printing Deprecation
7134-
Warning:
7135-
7136-
>>> olduint = np.deprecate(np.uint)
7137-
DeprecationWarning: `uint64` is deprecated! # may vary
7138-
>>> olduint(6)
7139-
6
7140-
7141-
Notes
7142-
-----
7143-
Deprecate may be run as a function or as a decorator
7144-
If run as a function, we initialise the decorator class
7145-
and execute its __call__ method.
7146-
7147-
""")
7148-
7149-
add_newdoc('numpy.lib.utils', 'deprecate_with_doc',
7150-
"""
7151-
7152-
Lambda function which calls the ``_Deprecate`` with a predefined
7153-
message.
7154-
7155-
Parameters
7156-
----------
7157-
message : str
7158-
7159-
""")

0 commit comments

Comments
 (0)