|
4 | 4 | "cell_type": "markdown",
|
5 | 5 | "metadata": {},
|
6 | 6 | "source": [
|
7 |
| - "# Azure embeddings example\n", |
8 |
| - "In this example we'll try to go over all operations for embeddings that can be done using the Azure endpoints. \\\n", |
9 |
| - "This example focuses on finetuning but touches on the majority of operations that are also available using the API. This example is meant to be a quick way of showing simple operations and is not meant as a tutorial." |
10 |
| - ] |
11 |
| - }, |
12 |
| - { |
13 |
| - "cell_type": "code", |
14 |
| - "execution_count": null, |
15 |
| - "metadata": {}, |
16 |
| - "outputs": [], |
17 |
| - "source": [ |
18 |
| - "import openai\n", |
19 |
| - "from openai import cli" |
20 |
| - ] |
21 |
| - }, |
22 |
| - { |
23 |
| - "cell_type": "markdown", |
24 |
| - "metadata": {}, |
25 |
| - "source": [ |
26 |
| - "## Setup\n", |
27 |
| - "In the following section the endpoint and key need to be set up of the next sections to work. \\\n", |
28 |
| - "Please go to https://portal.azure.com, find your resource and then under \"Resource Management\" -> \"Keys and Endpoints\" look for the \"Endpoint\" value and one of the Keys. They will act as api_base and api_key in the code below." |
29 |
| - ] |
30 |
| - }, |
31 |
| - { |
32 |
| - "cell_type": "code", |
33 |
| - "execution_count": null, |
34 |
| - "metadata": {}, |
35 |
| - "outputs": [], |
36 |
| - "source": [ |
37 |
| - "openai.api_key = '' # Please add your api key here\n", |
38 |
| - "openai.api_base = '' # Please add your endpoint here\n", |
39 |
| - "\n", |
40 |
| - "openai.api_type = 'azure'\n", |
41 |
| - "openai.api_version = '2022-03-01-preview' # this may change in the future" |
42 |
| - ] |
43 |
| - }, |
44 |
| - { |
45 |
| - "cell_type": "markdown", |
46 |
| - "metadata": {}, |
47 |
| - "source": [ |
48 |
| - "## Deployments\n", |
49 |
| - "In this section we are going to create a deployment using the finetune model that we just adapted and then used the deployment to create a simple completion operation." |
50 |
| - ] |
51 |
| - }, |
52 |
| - { |
53 |
| - "cell_type": "markdown", |
54 |
| - "metadata": {}, |
55 |
| - "source": [ |
56 |
| - "### Deployments: Create Manually\n", |
57 |
| - "Let's create a deployment using the text-similarity-curie-001 engine. You can create a new deployment by going to your Resource in your portal under \"Resource Management\" -> \"Deployments\"." |
58 |
| - ] |
59 |
| - }, |
60 |
| - { |
61 |
| - "cell_type": "markdown", |
62 |
| - "metadata": {}, |
63 |
| - "source": [ |
64 |
| - "### (Optional) Deployments: Create Programatically\n", |
65 |
| - "We can also create a deployment using code:" |
66 |
| - ] |
67 |
| - }, |
68 |
| - { |
69 |
| - "cell_type": "code", |
70 |
| - "execution_count": null, |
71 |
| - "metadata": {}, |
72 |
| - "outputs": [], |
73 |
| - "source": [ |
74 |
| - "model = \"text-similarity-curie-001\"\n", |
75 |
| - "\n", |
76 |
| - "# Now let's create the deployment\n", |
77 |
| - "print(f'Creating a new deployment with model: {model}')\n", |
78 |
| - "result = openai.Deployment.create(model=model, scale_settings={\"scale_type\":\"manual\", \"capacity\": 1})\n", |
79 |
| - "deployment_id = result[\"id\"]" |
80 |
| - ] |
81 |
| - }, |
82 |
| - { |
83 |
| - "cell_type": "markdown", |
84 |
| - "metadata": {}, |
85 |
| - "source": [ |
86 |
| - "### (Optional) Deployments: Retrieving\n", |
87 |
| - "Now let's check the status of the newly created deployment" |
88 |
| - ] |
89 |
| - }, |
90 |
| - { |
91 |
| - "cell_type": "code", |
92 |
| - "execution_count": null, |
93 |
| - "metadata": {}, |
94 |
| - "outputs": [], |
95 |
| - "source": [ |
96 |
| - "print(f'Checking for deployment status.')\n", |
97 |
| - "resp = openai.Deployment.retrieve(id=deployment_id)\n", |
98 |
| - "status = resp[\"status\"]\n", |
99 |
| - "print(f'Deployment {deployment_id} is with status: {status}')" |
100 |
| - ] |
101 |
| - }, |
102 |
| - { |
103 |
| - "cell_type": "markdown", |
104 |
| - "metadata": {}, |
105 |
| - "source": [ |
106 |
| - "### Deployments: Listing\n", |
107 |
| - "Now because creating a new deployment takes a long time, let's look in the subscription for an already finished deployment that succeeded." |
108 |
| - ] |
109 |
| - }, |
110 |
| - { |
111 |
| - "cell_type": "code", |
112 |
| - "execution_count": null, |
113 |
| - "metadata": {}, |
114 |
| - "outputs": [], |
115 |
| - "source": [ |
116 |
| - "print('While deployment running, selecting a completed one.')\n", |
117 |
| - "deployment_id = None\n", |
118 |
| - "result = openai.Deployment.list()\n", |
119 |
| - "for deployment in result.data:\n", |
120 |
| - " if deployment[\"status\"] == \"succeeded\":\n", |
121 |
| - " deployment_id = deployment[\"id\"]\n", |
122 |
| - " break\n", |
123 |
| - "\n", |
124 |
| - "if not deployment_id:\n", |
125 |
| - " print('No deployment with status: succeeded found.')\n", |
126 |
| - "else:\n", |
127 |
| - " print(f'Found a successful deployment with id: {deployment_id}.')" |
128 |
| - ] |
129 |
| - }, |
130 |
| - { |
131 |
| - "cell_type": "markdown", |
132 |
| - "metadata": {}, |
133 |
| - "source": [ |
134 |
| - "### Embeddings\n", |
135 |
| - "Now let's send a sample embedding to the deployment." |
136 |
| - ] |
137 |
| - }, |
138 |
| - { |
139 |
| - "cell_type": "code", |
140 |
| - "execution_count": null, |
141 |
| - "metadata": {}, |
142 |
| - "outputs": [], |
143 |
| - "source": [ |
144 |
| - "embeddings = openai.Embedding.create(deployment_id=deployment_id,\n", |
145 |
| - " input=\"The food was delicious and the waiter...\")\n", |
146 |
| - " \n", |
147 |
| - "print(embeddings)" |
148 |
| - ] |
149 |
| - }, |
150 |
| - { |
151 |
| - "cell_type": "markdown", |
152 |
| - "metadata": {}, |
153 |
| - "source": [ |
154 |
| - "### (Optional) Deployments: Delete\n", |
155 |
| - "Finally let's delete the deployment" |
156 |
| - ] |
157 |
| - }, |
158 |
| - { |
159 |
| - "cell_type": "code", |
160 |
| - "execution_count": null, |
161 |
| - "metadata": {}, |
162 |
| - "outputs": [], |
163 |
| - "source": [ |
164 |
| - "print(f'Deleting deployment: {deployment_id}')\n", |
165 |
| - "openai.Deployment.delete(sid=deployment_id)" |
| 7 | + "This code example has moved. You can now find it in the [OpenAI Cookbook](https://github.com/openai/openai-cookbook) at [examples/azure/embeddings.ipynb](https://github.com/openai/openai-cookbook/tree/main/examples/azure/embeddings.ipynb)." |
166 | 8 | ]
|
167 | 9 | }
|
168 | 10 | ],
|
169 | 11 | "metadata": {
|
170 |
| - "interpreter": { |
171 |
| - "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6" |
172 |
| - }, |
173 | 12 | "kernelspec": {
|
174 |
| - "display_name": "Python 3.8.10 64-bit", |
| 13 | + "display_name": "Python 3.9.9 ('openai')", |
175 | 14 | "language": "python",
|
176 | 15 | "name": "python3"
|
177 | 16 | },
|
|
185 | 24 | "name": "python",
|
186 | 25 | "nbconvert_exporter": "python",
|
187 | 26 | "pygments_lexer": "ipython3",
|
188 |
| - "version": "3.8.10" |
| 27 | + "version": "3.9.9" |
189 | 28 | },
|
190 |
| - "orig_nbformat": 4 |
| 29 | + "orig_nbformat": 4, |
| 30 | + "vscode": { |
| 31 | + "interpreter": { |
| 32 | + "hash": "365536dcbde60510dc9073d6b991cd35db2d9bac356a11f5b64279a5e6708b97" |
| 33 | + } |
| 34 | + } |
191 | 35 | },
|
192 | 36 | "nbformat": 4,
|
193 | 37 | "nbformat_minor": 2
|
|
0 commit comments