Thanks to visit codestin.com
Credit goes to github.com

Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
51 changes: 43 additions & 8 deletions doc/tutorials/dnn/dnn_yolo/dnn_yolo.markdown
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,9 @@ model, but the methodology applies to other supported models.

@note Currently, OpenCV supports the following YOLO models:
- [YOLOX](https://github.com/Megvii-BaseDetection/YOLOX/blob/main),
- [YoloNas](https://github.com/Deci-AI/super-gradients/tree/master),
- [YOLONas](https://github.com/Deci-AI/super-gradients/tree/master),
- [YOLOv10](https://github.com/THU-MIG/yolov10/tree/main),
- [YOLOv9](https://github.com/WongKinYiu/yolov9),
- [YOLOv8](https://github.com/ultralytics/ultralytics/tree/main),
- [YOLOv7](https://github.com/WongKinYiu/yolov7/tree/main),
- [YOLOv6](https://github.com/meituan/YOLOv6/blob/main),
Expand Down Expand Up @@ -79,7 +81,7 @@ the ONNX graph, a process that we will detail further in the subsequent sections

Now that we know know the parameters of the pre-precessing we can go on and export the model from
Pytorch to ONNX graph. Since in this tutorial we are using YOLOX as our sample model, lets use its
export for demonstration purposes (the process is identical for the rest of the YOLO detectors).
export for demonstration purposes (the process is identical for the rest of the YOLO detectors except `YOLOv10` model, see details on how to export it later in the post).
To exporting YOLOX we can just use [export script](https://github.com/Megvii-BaseDetection/YOLOX/blob/ac58e0a5e68e57454b7b9ac822aced493b553c53/tools/export_onnx.py). Particularly we need following commands:

@code{.bash}
Expand Down Expand Up @@ -125,6 +127,20 @@ than YOLOX) in case it is needed. However, usually each YOLO repository has pred
onnx.save(model_simp, args.output_name)
@endcode

#### Exporting YOLOv10 model

In oder to run YOLOv10 one needs to cut off postporcessing with dynamic shapes from torch and then convert it to ONNX. If someone is looking for on how to cut off the postprocessing, there is this [forked branch](https://github.com/Abdurrahheem/yolov10/tree/ash/opencv-export) from official YOLOv10. The forked branch cuts of the postprocessing by [returning output](https://github.com/Abdurrahheem/yolov10/blob/4fdaafd912c8891642bfbe85751ea66ec20f05ad/ultralytics/nn/modules/head.py#L522) of the model before postprocessing procedure itself. To convert torch model to ONNX follow this proceduce.

@code{.bash}
git clone [email protected]:Abdurrahheem/yolov10.git
conda create -n yolov10 python=3.9
conda activate yolov10
pip install -r requirements.txt
python export_opencv.py --model=<model-name> --imgsz=<input-img-size>
@endcode

By default `--model="yolov10s"` and `--imgsz=(480,640)`. This will generate file `yolov10s.onnx`, which can be use for inference in OpenCV

### Running Yolo ONNX detector with OpenCV Sample

Once we have our ONNX graph of the model, we just simply can run with OpenCV's sample. To that we need to make sure:
Expand All @@ -144,24 +160,25 @@ Once we have our ONNX graph of the model, we just simply can run with OpenCV's s
--padvalue=<padding_value> \
--paddingmode=<padding_mode> \
--backend=<computation_backend> \
--target=<target_computation_device>
--target=<target_computation_device> \
--width=<model_input_width> \
--height=<model_input_height> \
@endcode

VIDEO DEMO:
@youtube{NHtRlndE2cg}

- --input: File path to your input image or video. If omitted, it will capture frames from a camera.
- --classes: File path to a text file containing class names for object detection.
- --thr: Confidence threshold for detection (e.g., 0.5).
- --nms: Non-maximum suppression threshold (e.g., 0.4).
- --mean: Mean normalization value (e.g., 0.0 for no mean normalization).
- --scale: Scale factor for input normalization (e.g., 1.0).
- --scale: Scale factor for input normalization (e.g., 1.0, 1/255.0, etc).
- --yolo: YOLO model version (e.g., YOLOv3, YOLOv4, etc.).
- --padvalue: Padding value used in pre-processing (e.g., 114.0).
- --paddingmode: Method for handling image resizing and padding. Options: 0 (resize without extra processing), 1 (crop after resize), 2 (resize with aspect ratio preservation).
- --backend: Selection of computation backend (0 for automatic, 1 for Halide, 2 for OpenVINO, etc.).
- --target: Selection of target computation device (0 for CPU, 1 for OpenCL, etc.).
- --device: Camera device number (0 for default camera). If `--input` is not provided camera with index 0 will used by default.
- --width: Model input width. Not to be confused with the image width. (e.g., 416, 480, 640, 1280, etc).
- --height: Model input height. Not to be confused with the image height. (e.g., 416, 480, 640, 1280, etc).

Here `mean`, `scale`, `padvalue`, `paddingmode` should exactly match those that we discussed
in pre-processing section in order for the model to match result in PyTorch
Expand All @@ -183,7 +200,8 @@ cd <build directory of OpenCV>
./bin/example_dnn_yolo_detector
@endcode

This will execute the YOLOX detector with your camera. For YOLOv8 (for instance), follow these additional steps:
This will execute the YOLOX detector with your camera.
For YOLOv8 (for instance), follow these additional steps:

@code{.sh}
cd opencv_extra/testdata/dnn
Expand All @@ -195,6 +213,23 @@ cd <build directory of OpenCV>
./bin/example_dnn_yolo_detector --model=onnx/models/yolov8n.onnx --yolo=yolov8 --mean=0.0 --scale=0.003921568627 --paddingmode=2 --padvalue=144.0 --thr=0.5 --nms=0.4 --rgb=0
@endcode

For YOLOv10, follow these steps:

@code{.sh}
cd opencv_extra/testdata/dnn
python download_models.py yolov10
cd ..
export OPENCV_TEST_DATA_PATH=$(pwd)
cd <build directory of OpenCV>

./bin/example_dnn_yolo_detector --model=onnx/models/yolov8n.onnx --yolo=yolov10 --width=640 --height=480 --scale=0.003921568627 --padvalue=114
@endcode

This will run `YOLOv10` detector on first camera found on your system. If you want to run it on a image/video file, you can use `--input` option to specify the path to the file.


VIDEO DEMO:
@youtube{NHtRlndE2cg}

### Building a Custom Pipeline

Expand Down
96 changes: 86 additions & 10 deletions modules/dnn/test/test_onnx_importer.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,8 @@ void yoloPostProcessing(
std::vector<Rect2d>& keep_boxes,
float conf_threshold,
float iou_threshold,
const std::string& test_name);
const std::string& model_name,
const int nc=80);

template<typename TString>
static std::string _tf(TString filename, bool required = true)
Expand Down Expand Up @@ -2670,19 +2671,22 @@ void yoloPostProcessing(
std::vector<Rect2d>& keep_boxes,
float conf_threshold,
float iou_threshold,
const std::string& test_name
const std::string& model_name,
const int nc
){

// Retrieve
std::vector<int> classIds;
std::vector<float> confidences;
std::vector<Rect2d> boxes;

if (test_name == "yolov8"){
if (model_name == "yolov8" || model_name == "yolov10" ||
model_name == "yolov9")
{
cv::transposeND(outs[0], {0, 2, 1}, outs[0]);
}

if (test_name == "yolonas"){
if (model_name == "yolonas"){
// outs contains 2 elemets of shape [1, 8400, 80] and [1, 8400, 4]. Concat them to get [1, 8400, 84]
Mat concat_out;
// squeeze the first dimension
Expand All @@ -2696,22 +2700,27 @@ void yoloPostProcessing(
outs[0] = outs[0].reshape(0, std::vector<int>{1, 8400, 84});
}

// assert if last dim is 85 or 84
CV_CheckEQ(outs[0].dims, 3, "Invalid output shape. The shape should be [1, #anchors, 85 or 84]");
CV_CheckEQ((outs[0].size[2] == nc + 5 || outs[0].size[2] == 80 + 4), true, "Invalid output shape: ");

for (auto preds : outs){

preds = preds.reshape(1, preds.size[1]); // [1, 8400, 85] -> [8400, 85]
for (int i = 0; i < preds.rows; ++i)
{
// filter out non object
float obj_conf = (test_name == "yolov8" || test_name == "yolonas") ? 1.0f : preds.at<float>(i, 4) ;
float obj_conf = (model_name == "yolov8" || model_name == "yolonas" ||
model_name == "yolov9" || model_name == "yolov10") ? 1.0f : preds.at<float>(i, 4) ;
if (obj_conf < conf_threshold)
continue;

Mat scores = preds.row(i).colRange((test_name == "yolov8" || test_name == "yolonas") ? 4 : 5, preds.cols);
Mat scores = preds.row(i).colRange((model_name == "yolov8" || model_name == "yolonas" || model_name == "yolov9" || model_name == "yolov10") ? 4 : 5, preds.cols);
double conf;
Point maxLoc;
minMaxLoc(scores, 0, &conf, 0, &maxLoc);

conf = (test_name == "yolov8" || test_name == "yolonas") ? conf : conf * obj_conf;
conf = (model_name == "yolov8" || model_name == "yolonas" || model_name == "yolov9" || model_name == "yolov10") ? conf : conf * obj_conf;
if (conf < conf_threshold)
continue;

Expand All @@ -2722,15 +2731,14 @@ void yoloPostProcessing(
double w = det[2];
double h = det[3];

// std::cout << "cx: " << cx << " cy: " << cy << " w: " << w << " h: " << h << " conf: " << conf << " idx: " << maxLoc.x << std::endl;
// [x1, y1, x2, y2]
if (test_name == "yolonas"){
if (model_name == "yolonas" || model_name == "yolov10"){
boxes.push_back(Rect2d(cx, cy, w, h));
} else {
boxes.push_back(Rect2d(cx - 0.5 * w, cy - 0.5 * h,
cx + 0.5 * w, cy + 0.5 * h));
}
classIds.push_back(maxLoc.x);
classIds.push_back(maxLoc.x);
confidences.push_back(conf);
}
}
Expand All @@ -2747,7 +2755,75 @@ void yoloPostProcessing(
}
}

TEST_P(Test_ONNX_nets, YOLOv10)
{

std::string weightPath = _tf("models/yolov10s.onnx", false);

Size targetSize{640, 480};
float conf_threshold = 0.50;
float iou_threshold = 0.50;

std::vector<int> refClassIds{1, 16, 7};
std::vector<float> refScores{0.9510f, 0.9454f, 0.8404f};

std::vector<Rect2d> refBoxes{
Rect2d(105.5014, 112.8838, 472.9274, 350.0603),
Rect2d(109.8231, 185.7994, 258.5916, 452.9302),
Rect2d(388.5018, 62.1034, 576.6399, 143.3986)
};

Image2BlobParams imgParams(
Scalar::all(1 / 255.0),
targetSize,
Scalar::all(0),
true,
CV_32F,
DNN_LAYOUT_NCHW,
DNN_PMODE_LETTERBOX,
Scalar::all(114)
);

testYOLO(
weightPath, refClassIds, refScores, refBoxes,
imgParams, conf_threshold, iou_threshold,
1.0e-4, 1.0e-4, "yolov10");
}

TEST_P(Test_ONNX_nets, YOLOv9)
{

std::string weightPath = _tf("models/yolov9t.onnx", false);

Size targetSize{640, 480};
float conf_threshold = 0.50;
float iou_threshold = 0.50;

std::vector<int> refClassIds{1, 16, 2}; // wrong class mapping for yolov9
std::vector<float> refScores{0.959274f, 0.901125, 0.559396f};

std::vector<Rect2d> refBoxes{
Rect2d(106.255, 107.927, 472.497, 350.309),
Rect2d(108.633, 185.256, 259.287, 450.672),
Rect2d(390.701, 62.1454, 576.928, 141.795)
};

Image2BlobParams imgParams(
Scalar::all(1 / 255.0),
targetSize,
Scalar::all(0),
true,
CV_32F,
DNN_LAYOUT_NCHW,
DNN_PMODE_LETTERBOX,
Scalar::all(114)
);

testYOLO(
weightPath, refClassIds, refScores, refBoxes,
imgParams, conf_threshold, iou_threshold,
1.0e-4, 1.0e-4, "yolov9");
}
TEST_P(Test_ONNX_nets, YOLOX)
{
applyTestTag(CV_TEST_TAG_DEBUG_VERYLONG);
Expand Down
32 changes: 22 additions & 10 deletions samples/dnn/yolo_detector.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,8 @@ void yoloPostProcessing(
std::vector<Rect2d>& keep_boxes,
float conf_threshold,
float iou_threshold,
const std::string& test_name
const std::string& model_name,
const int nc
);

std::vector<std::string> classes;
Expand All @@ -40,6 +41,7 @@ std::string keys =
"{ yolo | yolox | yolo model version. }"
"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera. }"
"{ classes | | Optional path to a text file with names of classes to label detected objects. }"
"{ nc | 80 | Number of classes. Default is 80 (coming from COCO dataset). }"
"{ thr | .5 | Confidence threshold. }"
"{ nms | .4 | Non-maximum suppression threshold. }"
"{ mean | 0.0 | Normalization constant. }"
Expand Down Expand Up @@ -107,19 +109,21 @@ void yoloPostProcessing(
std::vector<Rect2d>& keep_boxes,
float conf_threshold,
float iou_threshold,
const std::string& test_name)
const std::string& model_name,
const int nc=80)
{
// Retrieve
std::vector<int> classIds;
std::vector<float> confidences;
std::vector<Rect2d> boxes;

if (test_name == "yolov8")
if (model_name == "yolov8" || model_name == "yolov10" ||
model_name == "yolov9")
{
cv::transposeND(outs[0], {0, 2, 1}, outs[0]);
}

if (test_name == "yolonas")
if (model_name == "yolonas")
{
// outs contains 2 elemets of shape [1, 8400, 80] and [1, 8400, 4]. Concat them to get [1, 8400, 84]
Mat concat_out;
Expand All @@ -131,25 +135,30 @@ void yoloPostProcessing(
// remove the second element
outs.pop_back();
// unsqueeze the first dimension
outs[0] = outs[0].reshape(0, std::vector<int>{1, 8400, 84});
outs[0] = outs[0].reshape(0, std::vector<int>{1, 8400, nc + 4});
}

// assert if last dim is 85 or 84
CV_CheckEQ(outs[0].dims, 3, "Invalid output shape. The shape should be [1, #anchors, 85 or 84]");
CV_CheckEQ((outs[0].size[2] == nc + 5 || outs[0].size[2] == 80 + 4), true, "Invalid output shape: ");

for (auto preds : outs)
{
preds = preds.reshape(1, preds.size[1]); // [1, 8400, 85] -> [8400, 85]
for (int i = 0; i < preds.rows; ++i)
{
// filter out non object
float obj_conf = (test_name == "yolov8" || test_name == "yolonas") ? 1.0f : preds.at<float>(i, 4) ;
float obj_conf = (model_name == "yolov8" || model_name == "yolonas" ||
model_name == "yolov9" || model_name == "yolov10") ? 1.0f : preds.at<float>(i, 4) ;
if (obj_conf < conf_threshold)
continue;

Mat scores = preds.row(i).colRange((test_name == "yolov8" || test_name == "yolonas") ? 4 : 5, preds.cols);
Mat scores = preds.row(i).colRange((model_name == "yolov8" || model_name == "yolonas" || model_name == "yolov9" || model_name == "yolov10") ? 4 : 5, preds.cols);
double conf;
Point maxLoc;
minMaxLoc(scores, 0, &conf, 0, &maxLoc);

conf = (test_name == "yolov8" || test_name == "yolonas") ? conf : conf * obj_conf;
conf = (model_name == "yolov8" || model_name == "yolonas" || model_name == "yolov9" || model_name == "yolov10") ? conf : conf * obj_conf;
if (conf < conf_threshold)
continue;

Expand All @@ -161,7 +170,7 @@ void yoloPostProcessing(
double h = det[3];

// [x1, y1, x2, y2]
if (test_name == "yolonas"){
if (model_name == "yolonas" || model_name == "yolov10"){
boxes.push_back(Rect2d(cx, cy, w, h));
} else {
boxes.push_back(Rect2d(cx - 0.5 * w, cy - 0.5 * h,
Expand Down Expand Up @@ -203,6 +212,7 @@ int main(int argc, char** argv)
// if model is default, use findFile to get the full path otherwise use the given path
std::string weightPath = findFile(parser.get<String>("model"));
std::string yolo_model = parser.get<String>("yolo");
int nc = parser.get<int>("nc");

float confThreshold = parser.get<float>("thr");
float nmsThreshold = parser.get<float>("nms");
Expand All @@ -219,6 +229,7 @@ int main(int argc, char** argv)
// check if yolo model is valid
if (yolo_model != "yolov5" && yolo_model != "yolov6"
&& yolo_model != "yolov7" && yolo_model != "yolov8"
&& yolo_model != "yolov10" && yolo_model !="yolov9"
&& yolo_model != "yolox" && yolo_model != "yolonas")
CV_Error(Error::StsError, "Invalid yolo model: " + yolo_model);

Expand Down Expand Up @@ -331,7 +342,8 @@ int main(int argc, char** argv)
yoloPostProcessing(
outs, keep_classIds, keep_confidences, keep_boxes,
confThreshold, nmsThreshold,
yolo_model);
yolo_model,
nc);
//![postprocess]

// covert Rect2d to Rect
Expand Down