Description
Code Sample, a copy-pastable example if possible
import matplotlib.pyplot as plt
import pandas as pd
_, axs = plt.subplots(2, 3, sharex='row')
for ax in axs.flatten():
ax.plot(range(5))
ax.set_xlabel('x-axis title')
ax = axs[1, 0]
data = [2]*5
pd.DataFrame(data).plot(ax=ax) # removes xaxis and yaxis labels except those on the sides of the grid.
plt.tight_layout() # so xaxis label can't hide beneath second plot
Problem description
When sharing axes on subplots only by row or column, the Pandas Dataframe plotting method eliminates all axis titles that are not on the far left or bottom right. This gets especially confusing since doing just one Pandas plot screws up the entire subplot grid. In contrast, the Matplotlib (Axes.plot
) and Pyplot (plt.plot
) plotting methods don't try to be smart with axis labels at all and leave them where they are.
The problem occurs for all four combinations of sharex
, sharey
, 'row'
and 'col'
.
A workaround is to iterate through the axes and set ax.xaxis.label.set_visible(True)
which has to be done after the last Pandas operation on any Axes contained in the Figure.
Expected Output
Three options:
-
Do not modify axis labels to maintain consistency with
matplotlib.axes.Axes.plot()
andmatplotlib.pyplot.plot()
. I. e. keep axis labels on all plots. -
Only remove x-axis labels on axes shared with an axes beneath. Only remove y-axis labels on axes shared with an axes to the left.
a) Do this for all axes in the subplot.
b) Only modify axis labels on axes that pandas actually plots to. (Sounds like a nightmare to implement.)
c) Include a keyword argument inpandas.Dataframe.plot
that allows the user to control whether or not axis labels are modified.
Output of pd.show_versions()
INSTALLED VERSIONS
commit: None
python: 2.7.14.final.0
python-bits: 64
OS: Windows
OS-release: 10
machine: AMD64
processor: Intel64 Family 6 Model 45 Stepping 7, GenuineIntel
byteorder: little
LC_ALL: None
LANG: en
LOCALE: None.None
pandas: 0.23.0
pytest: 3.5.0
pip: 9.0.3
setuptools: 39.0.1
Cython: 0.28.2
numpy: 1.14.2
scipy: 1.0.1
pyarrow: None
xarray: None
IPython: 5.6.0
sphinx: 1.7.2
patsy: 0.5.0
dateutil: 2.7.2
pytz: 2018.4
blosc: None
bottleneck: 1.2.1
tables: 3.4.2
numexpr: 2.6.4
feather: None
matplotlib: 2.2.2
openpyxl: 2.5.2
xlrd: 1.1.0
xlwt: 1.3.0
xlsxwriter: 1.0.4
lxml: 4.2.1
bs4: 4.6.0
html5lib: 1.0.1
sqlalchemy: 1.2.6
pymysql: None
psycopg2: None
jinja2: 2.10
s3fs: None
fastparquet: None
pandas_gbq: None
pandas_datareader: None