**Ray Tracing: The Next Week**
Peter Shirley
edited by Steve Hollasch and Trevor David Black
Version 3.0.0, 2020-Mar-23
Copyright 2018-2020 Peter Shirley. All rights reserved.
Overview
====================================================================================================
In Ray Tracing in One Weekend, you built a simple brute force path tracer. In this installment we’ll
add textures, volumes (like fog), rectangles, instances, lights, and support for lots of objects
using a BVH. When done, you’ll have a “real” ray tracer.
A heuristic in ray tracing that many people--including me--believe, is that most optimizations
complicate the code without delivering much speedup. What I will do in this mini-book is go with the
simplest approach in each design decision I make. Check https://in1weekend.blogspot.com/ for
readings and references to a more sophisticated approach. However, I strongly encourage you to do no
premature optimization; if it doesn’t show up high in the execution time profile, it doesn’t need
optimization until all the features are supported!
The two hardest parts of this book are the BVH and the Perlin textures. This is why the title
suggests you take a week rather than a weekend for this endeavor. But you can save those for last if
you want a weekend project. Order is not very important for the concepts presented in this book, and
without BVH and Perlin texture you will still get a Cornell Box!
Thanks to everyone who lent a hand on this project. You can find them in the [acknowledgments][] at
the end of this book.
Motion Blur
====================================================================================================
When you decided to ray trace, you decided visual quality was worth more run-time. In your fuzzy
reflection and defocus blur you needed multiple samples per pixel. Once you have taken a step down
that road, the good news is that almost all effects can be brute-forced. Motion blur is certainly
one of those. In a real camera, the shutter opens and stays open for a time interval, and the camera
and objects may move during that time. Its really an average of what the camera sees over that
interval that we want. We can get a random estimate by sending each ray at some random time when the
shutter is open. As long as the objects are where they should be at that time, we can get the right
average answer with a ray that is at exactly a single time. This is fundamentally why random ray
tracing tends to be simple.
The basic idea is to generate rays at random times while the shutter is open and intersect the model
at that one time. The way it is usually done is to have the camera move and the objects move, but
have each ray exist at exactly one time. This way the “engine” of the ray tracer can just make sure
the objects are where they need to be for the ray, and the intersection guts don’t change much.
For this we will first need to have a ray store the time it exists at:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
class ray {
public:
ray() {}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++ highlight
ray(const vec3& origin, const vec3& direction, double time = 0.0)
: orig(origin), dir(direction), tm(time)
{}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
vec3 origin() const { return orig; }
vec3 direction() const { return dir; }
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++ highlight
double time() const { return tm; }
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
vec3 at(double t) const {
return orig + t*dir;
}
public:
vec3 orig;
vec3 dir;
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++ highlight
double tm;
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
};
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [time-ray]: [ray.h] Ray with time information]
Now we need to modify the camera to generate rays at a random time between `time1` and `time2`.
Should the camera keep track of `time1` and `time2` or should that be up to the user of camera when
a ray is created? When in doubt, I like to make constructors complicated if it makes calls simple,
so I will make the camera keep track, but that’s a personal preference. Not many changes are needed
to camera because for now it is not allowed to move; it just sends out rays over a time period.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
class camera {
public:
camera(
vec3 lookfrom, vec3 lookat, vec3 vup,
double vfov, // top to bottom, in degrees
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++ highlight
double aspect, double aperture, double focus_dist, double t0 = 0, double t1 = 0
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
) {
origin = lookfrom;
lens_radius = aperture / 2;
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++ highlight
time0 = t0;
time1 = t1;
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
auto theta = degrees_to_radians(vfov);
auto half_height = tan(theta/2);
auto half_width = aspect * half_height;
w = unit_vector(lookfrom - lookat);
u = unit_vector(cross(vup, w));
v = cross(w, u);
lower_left_corner = origin
- half_width*focus_dist*u
- half_height*focus_dist*v
- focus_dist*w;
horizontal = 2*half_width*focus_dist*u;
vertical = 2*half_height*focus_dist*v;
}
ray get_ray(double s, double t) {
vec3 rd = lens_radius * random_in_unit_disk();
vec3 offset = u * rd.x() + v * rd.y();
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++ highlight
return ray(
origin + offset,
lower_left_corner + s*horizontal + t*vertical - origin - offset,
random_double(time0, time1)
);
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
}
public:
vec3 origin;
vec3 lower_left_corner;
vec3 horizontal;
vec3 vertical;
vec3 u, v, w;
double lens_radius;
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++ highlight
double time0, time1; // shutter open/close times
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
};
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [time-camera]: [camera.h] Camera with time information]
We also need a moving object. I’ll create a sphere class that has its center move linearly from
`center0` at `time0` to `center1` at `time1`. Outside that time interval it continues on, so those
times need not match up with the camera aperture open and close.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
class moving_sphere : public hittable {
public:
moving_sphere() {}
moving_sphere(
vec3 cen0, vec3 cen1, double t0, double t1, double r, shared_ptr m)
: center0(cen0), center1(cen1), time0(t0), time1(t1), radius(r), mat_ptr(m)
{};
virtual bool hit(const ray& r, double tmin, double tmax, hit_record& rec) const;
vec3 center(double time) const;
public:
vec3 center0, center1;
double time0, time1;
double radius;
shared_ptr mat_ptr;
};
vec3 moving_sphere::center(double time) const{
return center0 + ((time - time0) / (time1 - time0))*(center1 - center0);
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [moving-sphere]: [moving_sphere.h] A moving sphere]
An alternative to making a new moving sphere class is to just make them all move and have the
stationary ones have the same begin and end point. I’m on the fence about that trade-off between
fewer classes and more efficient stationary spheres, so let your design taste guide you. The
intersection code barely needs a change: `center` just needs to become a function `center(time)`:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
bool moving_sphere::hit(
const ray& r, double t_min, double t_max, hit_record& rec) const {
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++ highlight
vec3 oc = r.origin() - center(r.time());
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
auto a = r.direction().length_squared();
auto half_b = dot(oc, r.direction());
auto c = oc.length_squared() - radius*radius;
auto discriminant = half_b*half_b - a*c;
if (discriminant > 0) {
auto root = sqrt(discriminant);
auto temp = (-half_b - root)/a;
if (temp < t_max && temp > t_min) {
rec.t = temp;
rec.p = r.at(rec.t);
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++ highlight
vec3 outward_normal = (rec.p - center(r.time())) / radius;
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
rec.set_face_normal(r, outward_normal);
rec.mat_ptr = mat_ptr;
return true;
}
temp = (-half_b + root) / a;
if (temp < t_max && temp > t_min) {
rec.t = temp;
rec.p = r.at(rec.t);
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++ highlight
vec3 outward_normal = (rec.p - center(r.time())) / radius;
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
rec.set_face_normal(r, outward_normal);
rec.mat_ptr = mat_ptr;
return true;
}
}
return false;
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [moving-sphere-hit]: [moving-sphere.h] Moving sphere hit function]
Be sure that in the materials you have the scattered rays be at the time of the incident ray.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
class lambertian : public material {
public:
lambertian(const vec3& a) : albedo(a) {}
virtual bool scatter(
const ray& r_in, const hit_record& rec, vec3& attenuation, ray& scattered
) const {
vec3 scatter_direction = rec.normal + random_unit_vector();
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++ highlight
scattered = ray(rec.p, scatter_direction, r_in.time());
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
attenuation = albedo;
return true;
}
vec3 albedo;
};
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [lambertian-animate]: [material.h] Lambertian matrial for moving objects]
The code below takes the example diffuse spheres from the scene at the end of the last book, and
makes them move during the image render. (Think of a camera with shutter opening at time 0 and then
closing again at time 1.) Each sphere moves from its center $\mathbf{C}$ at time $t=0$ to
$\mathbf{C} + (0, r/2, 0)$ at time $t=1$, where $r$ is a random number in $[0,1)$:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
hittable_list random_scene() {
hittable_list world;
world.add(make_shared(
vec3(0,-1000,0), 1000, make_shared(vec3(0.5, 0.5, 0.5))));
int i = 1;
for (int a = -10; a < 10; a++) {
for (int b = -10; b < 10; b++) {
auto choose_mat = random_double();
vec3 center(a + 0.9*random_double(), 0.2, b + 0.9*random_double());
if ((center - vec3(4, .2, 0)).length() > 0.9) {
if (choose_mat < 0.8) {
// diffuse
auto albedo = vec3::random() * vec3::random();
world.add(make_shared(
center, center + vec3(0, random_double(0,.5), 0), 0.0, 1.0, 0.2,
make_shared(albedo)));
} else if (choose_mat < 0.95) {
// metal
auto albedo = vec3::random(.5, 1);
auto fuzz = random_double(0, .5);
world.add(
make_shared(center, 0.2, make_shared(albedo, fuzz)));
} else {
// glass
world.add(make_shared(center, 0.2, make_shared(1.5)));
}
}
}
}
world.add(make_shared(vec3(0, 1, 0), 1.0, make_shared(1.5)));
world.add(make_shared(
vec3(-4, 1, 0), 1.0, make_shared(vec3(0.4, 0.2, 0.1))));
world.add(make_shared(
vec3(4, 1, 0), 1.0, make_shared(vec3(0.7, 0.6, 0.5), 0.0)));
return world;
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [scene-spheres-moving]:
[main.cc] Last book's final scene, but with moving spheres]
And with these viewing parameters:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
const auto aspect_ratio = double(image_width) / image_height;
...
vec3 lookfrom(13,2,3);
vec3 lookat(0,0,0);
vec3 vup(0,1,0);
auto dist_to_focus = 10.0;
auto aperture = 0.0;
camera cam(lookfrom, lookat, vup, 20, aspect_ratio, aperture, dist_to_focus, 0.0, 1.0);
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [scene-spheres-moving-camera]: [main.cc] Viewing parameters]
gives the following result:

Bounding Volume Hierarchies
====================================================================================================
This part is by far the most difficult and involved part of the ray tracer we are working on. I am
sticking it in this chapter so the code can run faster, and because it refactors `hittable` a
little, and when I add rectangles and boxes we won't have to go back and refactor them.
The ray-object intersection is the main time-bottleneck in a ray tracer, and the time is linear with
the number of objects. But it’s a repeated search on the same model, so we ought to be able to make
it a logarithmic search in the spirit of binary search. Because we are sending millions to billions
of rays on the same model, we can do an analog of sorting the model and then each ray intersection
can be a sublinear search. The two most common families of sorting are to 1) divide the space, and
2) divide the objects. The latter is usually much easier to code up and just as fast to run for most
models.
The key idea of a bounding volume over a set of primitives is to find a volume that fully encloses
(bounds) all the objects. For example, suppose you computed a bounding sphere of 10 objects. Any ray
that misses the bounding sphere definitely misses all ten objects. If the ray hits the bounding
sphere, then it might hit one of the ten objects. So the bounding code is always of the form:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
if (ray hits bounding object)
return whether ray hits bounded objects
else
return false
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A key thing is we are dividing objects into subsets. We are not dividing the screen or the volume.
Any object is in just one bounding volume, but bounding volumes can overlap.
To make things sub-linear we need to make the bounding volumes hierarchical. For example, if we
divided a set of objects into two groups, red and blue, and used rectangular bounding volumes, we’d
have:
![Figure [bvol-hierarchy]: Bounding volume hierarchy](../images/fig.bvol-hierarchy.jpg)
Note that the blue and red bounding volumes are contained in the purple one, but they might
overlap, and they are not ordered -- they are just both inside. So the tree shown on the right has
no concept of ordering in the left and right children; they are simply inside. The code would be:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
if (hits purple)
hit0 = hits blue enclosed objects
hit1 = hits red enclosed objects
if (hit0 or hit1)
return true and info of closer hit
return false
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
To get that all to work we need a way to make good divisions, rather than bad ones, and a way to
intersect a ray with a bounding volume. A ray bounding volume intersection needs to be fast, and
bounding volumes need to be pretty compact. In practice for most models, axis-aligned boxes work
better than the alternatives, but this design choice is always something to keep in mind if you
encounter unusual types of models.
From now on we will call axis-aligned bounding rectangular parallelepiped (really, that is what they
need to be called if precise) axis-aligned bounding boxes, or AABBs. Any method you want to use to
intersect a ray with an AABB is fine. And all we need to know is whether or not we hit it; we don’t
need hit points or normals or any of that stuff that we need for an object we want to display.
Most people use the “slab” method. This is based on the observation that an n-dimensional AABB is
just the intersection of n axis-aligned intervals, often called “slabs” An interval is just
the points between two endpoints, _e.g._, $x$ such that $3 < x < 5$, or more succinctly $x$ in
$(3,5)$. In 2D, two intervals overlapping makes a 2D AABB (a rectangle):
![Figure [2daabb]: 2D axis-aligned bounding box](../images/fig.2daabb.jpg)
For a ray to hit one interval we first need to figure out whether the ray hits the boundaries. For
example, again in 2D, this is the ray parameters $t_0$ and $t_1$. (If the ray is parallel to the
plane those will be undefined.)
![Figure [ray-slab]: Ray-slab intersection](../images/fig.ray-slab.jpg)
In 3D, those boundaries are planes. The equations for the planes are $x = x_0$, and $x = x_1$. Where
does the ray hit that plane? Recall that the ray can be thought of as just a function that given a
$t$ returns a location $p(t)$:
$$ p(t) = \mathbf{a} + t \vec{\mathbf{b}} $$
That equation applies to all three of the x/y/z coordinates. For example,
$x(t) = \mathbf{a}_x + t \vec{\mathbf{b}}_x$. This ray hits the plane $x = x_0$ at the $t$ that
satisfies this equation:
$$ x_0 = \mathbf{a}_x + t_0 \vec{\mathbf{b}}_x $$
Thus $t$ at that hitpoint is:
$$ t_0 = \frac{x_0 - \mathbf{a}_x}{\vec{\mathbf{b}}_x} $$
We get the similar expression for $x_1$:
$$ t_1 = \frac{x_1 - \mathbf{a}_x}{\vec{\mathbf{b}}_x} $$
The key observation to turn that 1D math into a hit test is that for a hit, the $t$-intervals need
to overlap. For example, in 2D the green and blue overlapping only happens if there is a hit:
![Figure [rstio]: Ray-slab $t$-interval overlap](../images/fig.rstio.jpg)
What “do the t intervals in the slabs overlap?” would like in code is something like:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
compute (tx0, tx1)
compute (ty0, ty1)
return overlap?( (tx0, tx1), (ty0, ty1))
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
That is awesomely simple, and the fact that the 3D version also works is why people love the
slab method:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
compute (tx0, tx1)
compute (ty0, ty1)
compute (tz0, tz1)
return overlap?( (tx0, tx1), (ty0, ty1), (tz0, tz1))
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There are some caveats that make this less pretty than it first appears. First, suppose the ray is
travelling in the negative $x$ direction. The interval $(t_{x0}, t_{x1})$ as computed above might be
reversed, _e.g._ something like $(7, 3)$. Second, the divide in there could give us infinities. And
if the ray origin is on one of the slab boundaries, we can get a `NaN`. There are many ways these
issues are dealt with in various ray tracers’ AABB. (There are also vectorization issues like SIMD
which we will not discuss here. Ingo Wald’s papers are a great place to start if you want to go the
extra mile in vectorization for speed.) For our purposes, this is unlikely to be a major bottleneck
as long as we make it reasonably fast, so let’s go for simplest, which is often fastest anyway!
First let’s look at computing the intervals:
$$ t_{x0} = \frac{x_0 - \mathbf{a}_x}{\vec{\mathbf{b}}_x} $$
$$ t_{x1} = \frac{x_1 - \mathbf{a}_x}{\vec{\mathbf{b}}_x} $$
One troublesome thing is that perfectly valid rays will have $\vec{\mathbf{b}}_x = 0$, causing
division by zero. Some of those rays are inside the slab, and some are not. Also, the zero will have
a ± sign under IEEE floating point. The good news for $\vec{\mathbf{b}}_x = 0$ is that $t_{x0}$ and
$t_{x1}$ will both be +∞ or both be -∞ if not between $x_0$ and $x_1$. So, using min and max should
get us the right answers:
$$ t_{x0} = \min(
\frac{x_0 - \mathbf{a}_x}{\vec{\mathbf{b}}_x},
\frac{x_1 - \mathbf{a}_x}{\vec{\mathbf{b}}_x})
$$
$$ t_{x1} = \max(
\frac{x_0 - \mathbf{a}_x}{\vec{\mathbf{b}}_x},
\frac{x_1 - \mathbf{a}_x}{\vec{\mathbf{b}}_x})
$$
The remaining troublesome case if we do that is if $\vec{\mathbf{b}}_x = 0$ and either
$x_0 - \mathbf{a}_x = 0$ or $x_1 - \mathbf{a}_x = 0$ so we get a `NaN`. In that case we can probably
accept either hit or no hit answer, but we’ll revisit that later.
Now, let’s look at that overlap function. Suppose we can assume the intervals are not reversed (so
the first value is less than the second value in the interval) and we want to return true in that
case. The boolean overlap that also computes the overlap interval $(f, F)$ of intervals $(d, D)$ and
$(e, E)$ would be:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
bool overlap(d, D, e, E, f, F)
f = max(d, e)
F = min(D, E)
return (f < F)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If there are any `NaN`s running around there, the compare will return false so we need to be sure
our bounding boxes have a little padding if we care about grazing cases (and we probably should
because in a ray tracer all cases come up eventually). With all three dimensions in a loop and
passing in the interval $t_{min}$, $t_{max}$ we get:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
#include "rtweekend.h"
class aabb {
public:
aabb() {}
aabb(const vec3& a, const vec3& b) { _min = a; _max = b;}
vec3 min() const {return _min; }
vec3 max() const {return _max; }
bool hit(const ray& r, double tmin, double tmax) const {
for (int a = 0; a < 3; a++) {
auto t0 = ffmin((_min[a] - r.origin()[a]) / r.direction()[a],
(_max[a] - r.origin()[a]) / r.direction()[a]);
auto t1 = ffmax((_min[a] - r.origin()[a]) / r.direction()[a],
(_max[a] - r.origin()[a]) / r.direction()[a]);
tmin = ffmax(t0, tmin);
tmax = ffmin(t1, tmax);
if (tmax <= tmin)
return false;
}
return true;
}
vec3 _min;
vec3 _max;
};
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [aabb]: [aabb.h] Axis-aligned bounding box class]
Note that we use the simple custom `ffmax()` function (defined in `rtweekend.h`) instead of the C++
standard library `fmax()` utility. `ffmax()` is quite a bit faster because it doesn’t worry about
`NaN`s and other exceptions.
In reviewing this intersection method, Andrew Kensler at Pixar tried some experiments and has
proposed this version of the code which works extremely well on many compilers, and I have adopted
it as my go-to method:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
inline bool aabb::hit(const ray& r, double tmin, double tmax) const {
for (int a = 0; a < 3; a++) {
auto invD = 1.0f / r.direction()[a];
auto t0 = (min()[a] - r.origin()[a]) * invD;
auto t1 = (max()[a] - r.origin()[a]) * invD;
if (invD < 0.0f)
std::swap(t0, t1);
tmin = t0 > tmin ? t0 : tmin;
tmax = t1 < tmax ? t1 : tmax;
if (tmax <= tmin)
return false;
}
return true;
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [aabb-hit]: [aabb.h] Axis-aligned bounding box hit function]
We now need to add a function to compute the bounding boxes of all the hittables. Then we will make
a hierarchy of boxes over all the primitives and the individual primitives, like spheres, will live
at the leaves. That function returns a bool because not all primitives have bounding boxes (_e.g._,
infinite planes). In addition, objects move so it takes `time1` and `time2` for the interval of the
frame and the bounding box will bound the object moving through that interval.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
class hittable {
public:
virtual bool hit(
const ray& r, double t_min, double t_max, hit_record& rec) const = 0;
virtual bool bounding_box(double t0, double t1, aabb& output_box) const = 0;
};
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [hittable-bbox]: [hittable.h] Hittable class with bounding-box]
For a sphere, that `bounding_box` function is easy:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
bool sphere::bounding_box(double t0, double t1, aabb& output_box) const {
output_box = aabb(
center - vec3(radius, radius, radius),
center + vec3(radius, radius, radius));
return true;
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [sphere-bbox]: [sphere.h] Sphere with bounding box]
For `moving sphere`, we can take the box of the sphere at $t_0$, and the box of the sphere at $t_1$,
and compute the box of those two boxes:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
bool moving_sphere::bounding_box(double t0, double t1, aabb& output_box) const {
aabb box0(
center(t0) - vec3(radius, radius, radius),
center(t0) + vec3(radius, radius, radius));
aabb box1(
center(t1) - vec3(radius, radius, radius),
center(t1) + vec3(radius, radius, radius));
output_box = surrounding_box(box0, box1);
return true;
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [moving-sphere-bbox]: [moving_sphere.h] Moving sphere with bounding box]
For lists you can store the bounding box at construction, or compute it on the fly. I like doing it
the fly because it is only usually called at BVH construction.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
bool hittable_list::bounding_box(double t0, double t1, aabb& output_box) const {
if (objects.empty()) return false;
aabb temp_box;
bool first_true = objects[0]->bounding_box(t0, t1, temp_box);
if (!first_true)
return false;
output_box = temp_box;
for (const auto& object : objects) {
if (!objects[i]->bounding_box(t0, t1, temp_box))
return false;
output_box = surrounding_box(output_box, temp_box);
}
return true;
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [hit-list-bbox]: [hittable_list.h] Hittable list with bounding box]
This requires the `surrounding_box` function for `aabb` which computes the bounding box of two
boxes:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
aabb surrounding_box(aabb box0, aabb box1) {
vec3 small(ffmin(box0.min().x(), box1.min().x()),
ffmin(box0.min().y(), box1.min().y()),
ffmin(box0.min().z(), box1.min().z()));
vec3 big (ffmax(box0.max().x(), box1.max().x()),
ffmax(box0.max().y(), box1.max().y()),
ffmax(box0.max().z(), box1.max().z()));
return aabb(small,big);
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [surrounding-box]: [aabb.h] Surrounding bounding box]
A BVH is also going to be a `hittable` -- just like lists of `hittable`s. It’s really a container,
but it can respond to the query “does this ray hit you?”. One design question is whether we have two
classes, one for the tree, and one for the nodes in the tree; or do we have just one class and have
the root just be a node we point to. I am a fan of the one class design when feasible. Here is such
a class:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
class bvh_node : public hittable {
public:
bvh_node();
bvh_node(hittable_list& list, double time0, double time1)
: bvh_node(list.objects, 0, list.objects.size(), time0, time1)
{}
bvh_node(
std::vector>& objects,
size_t start, size_t end, double time0, double time1);
virtual bool hit(const ray& r, double tmin, double tmax, hit_record& rec) const;
virtual bool bounding_box(double t0, double t1, aabb& output_box) const;
public:
shared_ptr left;
shared_ptr right;
aabb box;
};
bool bvh_node::bounding_box(double t0, double t1, aabb& output_box) const {
output_box = box;
return true;
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [bvh]: [bvh.h] Bounding volume hierarchy]
Note that the children pointers are to generic hittables. They can be other `bvh_nodes`, or
`spheres`, or any other `hittable`.
The `hit` function is pretty straightforward: check whether the box for the node is hit, and if so,
check the children and sort out any details:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
bool bvh_node::hit(const ray& r, double t_min, double t_max, hit_record& rec) const {
if (!box.hit(r, t_min, t_max))
return false;
bool hit_left = left->hit(r, t_min, t_max, rec);
bool hit_right = right->hit(r, t_min, hit_left ? rec.t : t_max, rec);
return hit_left || hit_right;
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [bvh-hit]: [bvh.h] Bounding volume hierarchy hit function]
The most complicated part of any efficiency structure, including the BVH, is building it. We do this
in the constructor. A cool thing about BVHs is that as long as the list of objects in a `bvh_node`
gets divided into two sub-lists, the hit function will work. It will work best if the division is
done well, so that the two children have smaller bounding boxes than their parent’s bounding box,
but that is for speed not correctness. I’ll choose the middle ground, and at each node split the
list along one axis. I’ll go for simplicity:
1. randomly choose an axis
2. sort the primitives using library qsort
3. put half in each subtree
I used the old-school C `qsort` rather than the C++ sort because I need a different compare operator
depending on axis, and `qsort` takes a compare function rather than using the less-than operator. I
pass in a pointer to pointer -- this is just C for “array of pointers” because a pointer in C can
also just be a pointer to the first element of an array.
When the list coming in is two elements, I put one in each subtree and end the recursion. The
traverse algorithm should be smooth and not have to check for null pointers, so if I just have one
element I duplicate it in each subtree. Checking explicitly for three elements and just following
one recursion would probably help a little, but I figure the whole method will get optimized later.
This yields:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
#include
...
bvh_node::bvh_node(
std::vector>& objects,
size_t start, size_t end, double time0, double time1
) {
int axis = random_int(0,2);
auto comparator = (axis == 0) ? box_x_compare
: (axis == 1) ? box_y_compare
: box_z_compare;
size_t object_span = end - start;
if (object_span == 1) {
left = right = objects[start];
} else if (object_span == 2) {
if (comparator(objects[start], objects[start+1])) {
left = objects[start];
right = objects[start+1];
} else {
left = objects[start+1];
right = objects[start];
}
} else {
std::sort(objects.begin() + start, objects.begin() + end, comparator);
auto mid = start + object_span/2;
left = make_shared(objects, start, mid, time0, time1);
right = make_shared(objects, mid, end, time0, time1);
}
aabb box_left, box_right;
if ( !left->bounding_box (time0, time1, box_left)
|| !right->bounding_box(time0, time1, box_right)
)
std::cerr << "No bounding box in bvh_node constructor.\n";
box = surrounding_box(box_left, box_right);
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [bvh-node]: [bvh.h] Bounding volume hierarchy node]
The check for whether there is a bounding box at all is in case you sent in something like an
infinite plane that doesn’t have a bounding box. We don’t have any of those primitives, so it
shouldn’t happen until you add such a thing.
Now we need to implement the box comparison functions, used by `std::sort()`. To do this, create a
generic comparator returns true if the first argument is less than the second, given an additional
axis index argument. Then define axis-specific comparison functions that use the generic comparison
function.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
inline bool box_compare(const shared_ptr a, const shared_ptr b, int axis) {
aabb box_a;
aabb box_b;
if (!a->bounding_box(0,0, box_a) || !b->bounding_box(0,0, box_b))
std::cerr << "No bounding box in bvh_node constructor.\n";
return box_a.min().e[axis] < box_b.min().e[axis];
}
bool box_x_compare (const shared_ptr a, const shared_ptr b) {
return box_compare(a, b, 0);
}
bool box_y_compare (const shared_ptr a, const shared_ptr b) {
return box_compare(a, b, 1);
}
bool box_z_compare (const shared_ptr a, const shared_ptr b) {
return box_compare(a, b, 2);
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [bvh-x-comp]: [bvh.h] BVH comparison function, X-axis]
Solid Textures
====================================================================================================
A texture in graphics usually means a function that makes the colors on a surface procedural. This
procedure can be synthesis code, or it could be an image lookup, or a combination of both. We will
first make all colors a texture. Most programs keep constant rgb colors and textures different
classes so feel free to do something different, but I am a big believer in this architecture because
being able to make any color a texture is great.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
#include "rtweekend.h"
class texture {
public:
virtual vec3 value(double u, double v, const vec3& p) const = 0;
};
class constant_texture : public texture {
public:
constant_texture() {}
constant_texture(vec3 c) : color(c) {}
virtual vec3 value(double u, double v, const vec3& p) const {
return color;
}
public:
vec3 color;
};
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [texture]: [texture.h] A texture class]
Now we can make textured materials by replacing the vec3 color with a texture pointer:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
class lambertian : public material {
public:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++ highlight
lambertian(shared_ptr a) : albedo(a) {}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
virtual bool scatter(
const ray& r_in, const hit_record& rec, vec3& attenuation, ray& scattered
) const {
vec3 scatter_direction = rec.normal + random_unit_vector();
scattered = ray(rec.p, scatter_direction, r_in.time());
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++ highlight
attenuation = albedo->value(rec.u, rec.v, rec.p);
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
return true;
}
public:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++ highlight
shared_ptr albedo;
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
};
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [lambertian-textured]: [material.h] Lambertian material with texture]
where you used to have
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
...make_shared(vec3(0.5, 0.5, 0.5))
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [lam-solid]: [main.cc] Lambertian material with solid color]
now you should replace the `vec3(...)` with `make_shared(vec3(...))`
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
...make_shared(make_shared(vec3(0.5, 0.5, 0.5)))
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [lam-textured]: [main.cc] Lambertian material with texture]
We can create a checker texture by noting that the sign of sine and cosine just alternates in a
regular way and if we multiply trig functions in all three dimensions, the sign of that product
forms a 3D checker pattern.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
class checker_texture : public texture {
public:
checker_texture() {}
checker_texture(shared_ptr t0, shared_ptr t1): even(t0), odd(t1) {}
virtual vec3 value(double u, double v, const vec3& p) const {
auto sines = sin(10*p.x())*sin(10*p.y())*sin(10*p.z());
if (sines < 0)
return odd—>value(u, v, p);
else
return even->value(u, v, p);
}
public:
shared_ptr odd;
shared_ptr even;
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [checker-texture]: [texture.h] Checkered texture]
Those checker odd/even pointers can be to a constant texture or to some other procedural texture.
This is in the spirit of shader networks introduced by Pat Hanrahan back in the 1980s.
If we add this to our `random_scene()` function’s base sphere:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
auto checker = make_shared(
make_shared(vec3(0.2, 0.3, 0.1)),
make_shared(vec3(0.9, 0.9, 0.9))
);
world.add(make_shared(vec3(0,-1000,0), 1000, make_shared(checker)));
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [checker-example]: [main.cc] Checkered texture in use]
We get:

If we add a new scene:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
hittable_list two_spheres() {
hittable_list objects;
auto checker = make_shared(
make_shared(vec3(0.2, 0.3, 0.1)),
make_shared(vec3(0.9, 0.9, 0.9))
);
objects.add(make_shared(vec3(0,-10, 0), 10, make_shared(checker)));
objects.add(make_shared(vec3(0, 10, 0), 10, make_shared(checker)));
return objects;
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [scene-two-checker]: [main.cc] Scene with two checkered spheres]
With camera:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
const auto aspect_ratio = double(image_width) / image_height;
...
vec3 lookfrom(13,2,3);
vec3 lookat(0,0,0);
vec3 vup(0,1,0);
auto dist_to_focus = 10.0;
auto aperture = 0.0;
camera cam(lookfrom, lookat, vup, 20, aspect_ratio, aperture, dist_to_focus, 0.0, 1.0);
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [scene-two-checker-view]: [main.cc] Viewing parameters]
We get:

To get cool looking solid textures most people use some form of Perlin noise. These are named after
their inventor Ken Perlin. Perlin texture doesn’t return white noise like this:

Instead it returns something similar to blurred white noise:

A key part of Perlin noise is that it is repeatable: it takes a 3D point as input and always returns
the same randomish number. Nearby points return similar numbers. Another important part of Perlin
noise is that it be simple and fast, so it’s usually done as a hack. I’ll build that hack up
incrementally based on Andrew Kensler’s description.
We could just tile all of space with a 3D array of random numbers and use them in blocks. You get
something blocky where the repeating is clear:

Let’s just use some sort of hashing to scramble this, instead of tiling. This has a bit of support
code to make it all happen:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
class perlin {
public:
perlin() {
ranfloat = new double[point_count];
for (int i = 0; i < point_count; ++i) {
ranfloat[i] = random_double();
}
perm_x = perlin_generate_perm();
perm_y = perlin_generate_perm();
perm_z = perlin_generate_perm();
}
~perlin() {
delete[] ranfloat;
delete[] perm_x;
delete[] perm_y;
delete[] perm_z;
}
double noise(const vec3& p) const {
auto u = p.x() - floor(p.x());
auto v = p.y() - floor(p.y());
auto w = p.z() - floor(p.z());
auto i = static_cast(4*p.x()) & 255;
auto j = static_cast(4*p.y()) & 255;
auto k = static_cast(4*p.z()) & 255;
return ranfloat[perm_x[i] ^ perm_y[j] ^ perm_z[k]];
}
private:
static const int point_count = 256;
double* ranfloat;
int* perm_x;
int* perm_y;
int* perm_z;
static int* perlin_generate_perm() {
auto p = new int[point_count];
for (int i = 0; i < perlin::point_count; i++)
p[i] = i;
permute(p, point_count);
return p;
}
void permute(int* p, int n) {
for (int i = n-1; i > 0; i--) {
int target = random_int(0, i);
int tmp = p[i];
p[i] = p[target];
p[target] = tmp;
}
}
};
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [perlin]: [perlin.h] A Perlin texture class and functions]
Now if we create an actual texture that takes these floats between 0 and 1 and creates grey
colors:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
#include "perlin.h"
class noise_texture : public texture {
public:
noise_texture() {}
virtual vec3 value(double u, double v, const vec3& p) const {
return vec3(1,1,1) * noise.noise(p);
}
public:
perlin noise;
};
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [noise-texture]: [texture.h] Noise texture]
We can use that texture on some spheres:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
hittable_list two_perlin_spheres() {
hittable_list objects;
auto pertext = make_shared(4);
objects.add(make_shared(vec3(0,-1000, 0), 1000, make_shared(pertext)));
objects.add(make_shared(vec3(0, 2, 0), 2, make_shared(pertext)));
return objects;
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [scene-perlin]: [main.cc] Scene with two Perlin-textured spheres]
With the same camera as before:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
const auto aspect_ratio = double(image_width) / image_height;
...
vec3 lookfrom(13,2,3);
vec3 lookat(0,0,0);
vec3 vup(0,1,0);
auto dist_to_focus = 10.0;
auto aperture = 0.0;
camera cam(lookfrom, lookat, vup, 20, aspect_ratio, aperture, dist_to_focus, 0.0, 1.0);
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [scene-perlin-view]: [main.cc] Viewing parameters]
Add the hashing does scramble as hoped:

To make it smooth, we can linearly interpolate:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
inline double trilinear_interp(double c[2][2][2], double u, double v, double w) {
auto accum = 0.0;
for (int i=0; i < 2; i++)
for (int j=0; j < 2; j++)
for (int k=0; k < 2; k++)
accum += (i*u + (1-i)*(1-u))*
(j*v + (1-j)*(1-v))*
(k*w + (1-k)*(1-w))*c[i][j][k];
return accum;
}
class perlin {
public:
...
double noise(const vec3& p) const {
auto u = p.x() - floor(p.x());
auto v = p.y() - floor(p.y());
auto w = p.z() - floor(p.z());
int i = floor(p.x());
int j = floor(p.y());
int k = floor(p.z());
double c[2][2][2];
for (int di=0; di < 2; di++)
for (int dj=0; dj < 2; dj++)
for (int dk=0; dk < 2; dk++)
c[di][dj][dk] = ranfloat[
perm_x[(i+di) & 255] ^
perm_y[(j+dj) & 255] ^
perm_z[(k+dk) & 255]
];
return trilinear_interp(c, u, v, w);
}
...
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [perlin-trilinear]: [perlin.h] Perlin with trilienear interpolation]
And we get:

Better, but there are obvious grid features in there. Some of it is Mach bands, a known perceptual
artifact of linear interpolation of color. A standard trick is to use a Hermite cubic to round off
the interpolation:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
class perlin (
public:
...
double noise(const vec3& p) const {
auto u = p.x() - floor(p.x());
auto v = p.y() - floor(p.y());
auto w = p.z() - floor(p.z());
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++ highlight
u = u*u*(3-2*u);
v = v*v*(3-2*v);
w = w*w*(3-2*w);
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
int i = floor(p.x());
int j = floor(p.y());
int k = floor(p.z());
...
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [perlin-smoothed]: [perlin.h] Perlin smoothed]
This gives a smoother looking image:

It is also a bit low frequency. We can scale the input point to make it vary more quickly:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
class noise_texture : public texture {
public:
noise_texture() {}
noise_texture(double sc) : scale(sc) {}
virtual vec3 value(double u, double v, const vec3& p) const {
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++ highlight
return vec3(1,1,1) * noise.noise(scale * p);
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
}
public:
perlin noise;
double scale;
};
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [perlin-smoothed-2]: [texture.h] Perlin smoothed, higher frequency]
which gives:

This is still a bit grid blocky looking, probably because the min and max of the pattern always
lands exactly on the integer x/y/z. Ken Perlin’s very clever trick was to instead put random unit
vectors (instead of just floats) on the lattice points, and use a dot product to move the min and
max off the lattice. So, first we need to change the random floats to random vectors. These vectors
are any reasonable set of irregular directions, and I won't bother to make them exactly uniform:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
class perlin {
public:
perlin() {
ranvec = new vec3[point_count];
for (int i = 0; i < point_count; ++i) {
ranvec[i] = unit_vector(vec3::random(-1,1));
}
perm_x = perlin_generate_perm();
perm_y = perlin_generate_perm();
perm_z = perlin_generate_perm();
}
~perlin() {
delete[] ranvec;
delete[] perm_x;
delete[] perm_y;
delete[] perm_z;
}
...
private:
vec3* ranvec;
int* perm_x;
int* perm_y;
int* perm_z;
...
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [perlin-randunit]: [perlin.h] Perlin with random unit translations]
The Perlin class `noise()` method is now:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
class perlin {
public:
...
double noise(const vec3& p) const {
auto u = p.x() - floor(p.x());
auto v = p.y() - floor(p.y());
auto w = p.z() - floor(p.z());
int i = floor(p.x());
int j = floor(p.y());
int k = floor(p.z());
vec3 c[2][2][2];
for (int di=0; di < 2; di++)
for (int dj=0; dj < 2; dj++)
for (int dk=0; dk < 2; dk++)
c[di][dj][dk] = ranvec[
perm_x[(i+di) & 255] ^
perm_y[(j+dj) & 255] ^
pexm_z[(k+dk) & 255]
];
return perlin_interp(c, u, v, w);
}
...
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [perlin-2]: [perlin.h] Perlin class with new noise() method]
And the interpolation becomes a bit more complicated:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
class perlin {
...
private:
...
inline double perlin_interp(vec3 c[2][2][2], double u, double v, double w) {
auto uu = u*u*(3-2*u);
auto vv = v*v*(3-2*v);
auto ww = w*w*(3-2*w);
auto accum = 0.0;
for (int i=0; i < 2; i++)
for (int j=0; j < 2; j++)
for (int k=0; k < 2; k++) {
vec3 weight_v(u-i, v-j, w-k);
accum += (i*uu + (1-i)*(1-uu))
* (j*vv + (1-j)*(1-vv))
* (k*ww + (1-k)*(1-ww))
* dot(c[i][j][k], weight_v);
}
return accum;
}
...
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [perlin-interp]: [perlin.h] Perlin interpolation function so far]
The output of the perlin interpretation can return negative values. These negative values will be
passed to the `sqrt()` function of our gamma function and get turned into `NaN`s. We will cast the
perlin output back to between 0 and 1.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
class noise_texture : public texture {
public:
noise_texture() {}
noise_texture(double sc) : scale(sc) {}
virtual vec3 value(double u, double v, const vec3& p) const {
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++ highlight
return vec3(1,1,1) * 0.5 * (1.0 + noise.noise(scale * p));
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
}
public:
perlin noise;
double scale;
};
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [perlin-smoothed-2]: [perlin.h] Perlin smoothed, higher frequency]
This finally gives something more reasonable looking:

Very often, a composite noise that has multiple summed frequencies is used. This is usually called
turbulence and is a sum of repeated calls to noise:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
class perlin {
...
public:
...
double turb(const vec3& p, int depth=7) const {
auto accum = 0.0;
vec3 temp_p = p;
auto weight = 1.0;
for (int i = 0; i < depth; i++) {
accum += weight*noise(temp_p);
weight *= 0.5;
temp_p *= 2;
}
return fabs(accum);
}
...
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [perlin-turb]: [perlin.h] Turbulence function]
Here `fabs()` is the absolute value function defined in ``.
Used directly, turbulence gives a sort of camouflage netting appearance:

However, usually turbulence is used indirectly. For example, the “hello world” of procedural solid
textures is a simple marble-like texture. The basic idea is to make color proportional to something
like a sine function, and use turbulence to adjust the phase (so it shifts $x$ in $\sin(x)$) which
makes the stripes undulate. Commenting out straight noise and turbulence, and giving a marble-like
effect is:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
class noise_texture : public texture {
public:
noise_texture() {}
noise_texture(double sc) : scale(sc) {}
virtual vec3 value(double u, double v, const vec3& p) const {
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++ highlight
return vec3(1,1,1) * 0.5 * (1 + sin(scale*p.z() + 10*noise.turb(p)));
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
}
public:
perlin noise;
double scale;
};
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [noise-tex-2]: [texture.h] Noise texture with turbulence]
Which yields:

Image Texture Mapping
====================================================================================================
We used the hitpoint p before to index a procedure solid texture like marble. We can also read in an
image and use a 2D $(u,v)$ texture coordinate to index into the image.
A direct way to use scaled $(u,v)$ in an image is to round the u and v to integers, and use that as
$(i,j)$ pixels. This is awkward, because we don’t want to have to change the code when we change
image resolution. So instead, one of the the most universal unofficial standards in graphics is to
use texture coordinates instead of image pixel coordinates. These are just some form of fractional
position in the image. For example, for pixel $(i,j)$ in an $N_x$ by $N_y$ image, the image texture
position is:
$$ u = \frac{i}{N_x-1} $$
$$ v = \frac{j}{N_y-1} $$
This is just a fractional position. For a hittable, we need to also return a $u$ and $v$ in the hit
record. For spheres, this is usually based on some form of longitude and latitude, _i.e._, spherical
coordinates. So if we have a $(\theta,\phi)$ in spherical coordinates we just need to scale $\theta$
and $\phi$ to fractions. If $\theta$ is the angle down from the pole, and $\phi$ is the angle around
the axis through the poles, the normalization to $[0,1]$ would be:
$$ u = \frac{\phi}{2\pi} $$
$$ v = \frac{\theta}{\pi} $$
To compute $\theta$ and $\phi$, for a given hitpoint, the formula for spherical coordinates of a
unit radius sphere on the origin is:
$$ x = \cos(\phi) \cos(\theta) $$
$$ y = \sin(\phi) \cos(\theta) $$
$$ z = \sin(\theta) $$
We need to invert that. Because of the lovely `` function `atan2()` which takes any number
proportional to sine and cosine and returns the angle, we can pass in $x$ and $y$ (the
$\cos(\theta)$ cancel):
$$ \phi = \text{atan2}(y, x) $$
The $atan2$ returns in the range $-\pi$ to $\pi$ so we need to take a little care there.
The $\theta$ is more straightforward:
$$ \theta = \text{asin}(z) $$
which returns numbers in the range $-\pi/2$ to $\pi/2$.
So for a sphere, the $(u,v)$ coord computation is accomplished by a utility function that expects
things on the unit sphere centered at the origin. The call inside sphere::hit should be:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
get_sphere_uv((rec.p-center)/radius, rec.u, rec.v);
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [get-sphere-uv-call]: [sphere.h] Sphere UV coordinates from hit]
The utility function is:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
void get_sphere_uv(const vec3& p, double& u, double& v) {
auto phi = atan2(p.z(), p.x());
auto theta = asin(p.y());
u = 1-(phi + pi) / (2*pi);
v = (theta + pi/2) / pi;
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [get-sphere-uv]: [sphere.h] get_sphere_uv function]
Now we also need to create a texture class that holds an image. I am going to use my favorite image
utility `stb_image`. It reads in an image into a big array of unsigned char. These are just packed
RGBs that each range 0..255 for black to fully-on.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
#include "texture.h"
class image_texture : public texture {
public:
image_texture() {}
image_texture(unsigned char *pixels, int A, int B)
: data(pixels), nx(A), ny(B) {}
~image_texture() {
delete data;
}
virtual vec3 value(double u, double v, const vec3& p) const {
// If we have no texture data, then always emit cyan (as a debugging aid).
if (data == nullptr)
return vec3(0,1,1);
auto i = static_cast(( u)*nx);
auto j = static_cast((1-v)*ny-0.001);
if (i < 0) i = 0;
if (j < 0) j = 0;
if (i > nx-1) i = nx-1;
if (j > ny-1) j = ny-1;
auto r = static_cast(data[3*i + 3*nx*j+0]) / 255.0;
auto g = static_cast(data[3*i + 3*nx*j+1]) / 255.0;
auto b = static_cast(data[3*i + 3*nx*j+2]) / 255.0;
return vec3(r, g, b);
}
public:
unsigned char *data;
int nx, ny;
};
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [img-texture]: [surface_texture.h] Image texture class]
The representation of a packed array in that order is pretty standard. Thankfully, the `stb_image`
package makes that super simple -- just include the header `rtw_stb_image.h` in `main.h`:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
#include "rtw_stb_image.h"
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [incl-stb-img]: Including the STB image package]

To read an image from a file earthmap.jpg (I just grabbed a random earth map from the web -- any
standard projection will do for our purposes), and then assign it to a diffuse material, the code
is:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
hittable_list earth() {
int nx, ny, nn;
unsigned char* texture_data = stbi_load("earthmap.jpg", &nx, &ny, &nn, 0);
auto earth_surface =
make_shared(make_shared(texture_data, nx, ny));
auto globe = make_shared(vec3(0,0,0), 2, earth_surface);
return hittable_list(globe);
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [stbi-load-use]: [main.cc] Using stbi_load() to load an image]
We start to see some of the power of all colors being textures -- we can assign any kind of texture
to the lambertian material, and lambertian doesn’t need to be aware of it.
To test this, assign it to a sphere, and then temporarily cripple the `ray_color()` function in main
to just return attenuation. You should get something like:

Rectangles and Lights
====================================================================================================
First, let’s make a light emitting material. We need to add an emitted function (we could also add
it to `hit_record instead` -- that’s a matter of design taste). Like the background, it just tells
the ray what color it is and performs no reflection. It’s very simple:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
class diffuse_light : public material {
public:
diffuse_light(shared_ptr a) : emit(a) {}
virtual bool scatter(
const ray& r_in, const hit_record& rec, vec3& attenuation, ray& scattered
) const {
return false;
}
virtual vec3 emitted(double u, double v, const vec3& p) const {
return emit->value(u, v, p);
}
public:
shared_ptr emit;
};
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [diffuse-light]: [material.h] A diffuse light class]
So that I don’t have to make all the non-emitting materials implement `emitted()`, I have the base
class return black:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
class material {
public:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++ highlight
virtual vec3 emitted(double u, double v, const vec3& p) const {
return vec3(0,0,0);
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
virtual bool scatter(
const ray& r_in, const hit_record& rec, vec3& attenuation, ray& scattered
) const = 0;
};
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [matl-emit]: [material.h] New emitted function in class material]
Next, we want a pure black background so the only light in the scene is coming from the emitters. To
do this, we’ll add a background color parameter to our `ray_color` function, and pay attention to
the new `emitted` value.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
vec3 ray_color(const ray& r, const vec3& background, const hittable& world, int depth) {
hit_record rec;
// If we've exceeded the ray bounce limit, no more light is gathered.
if (depth <= 0)
return vec3(0,0,0);
// If the ray hits nothing, return the background color.
if (!world.hit(r, 0.001, infinity, rec))
return background;
ray scattered;
vec3 attenuation;
vec3 emitted = rec.mat_ptr->emitted(rec.u, rec.v, rec.p);
if (!rec.mat_ptr->scatter(r, rec, attenuation, scattered))
return emitted;
return emitted + attenuation * ray_color(scattered, background, world, depth-1);
}
...
int main() {
...
const vec3 background(0,0,0);
...
color += ray_color(r, background, world, max_depth);
...
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [ray-color-emitted]: [main.cc] ray_color function for emitting materials]
Now, let’s make some rectangles. Rectangles are often convenient for modeling man-made environments.
I’m a fan of doing axis-aligned rectangles because they are easy. (We’ll get to instancing so we can
rotate them later.)
First, here is a rectangle in an xy plane. Such a plane is defined by its z value. For example, $z =
k$. An axis-aligned rectangle is defined by the lines $x=x_0$, $x=x_1$, $y=y_0$, and $y=y_1$.
![Figure [ray-rect]: Ray-rectangle intersection](../images/fig.ray-rect.jpg)
To determine whether a ray hits such a rectangle, we first determine where the ray hits the plane.
Recall that a ray $p(t) = \mathbf{a} + t \cdot \vec{\mathbf{b}}$ has its z component defined by
$z(t) = \mathbf{a}_z + t \cdot \vec{\mathbf{b}}_z$. Rearranging those terms we can solve for what
the t is where $z=k$.
$$ t = \frac{k-\mathbf{a}_z}{\vec{\mathbf{b}}_z} $$
Once we have $t$, we can plug that into the equations for $x$ and $y$:
$$ x = \mathbf{a}_x + t \cdot \vec{\mathbf{b}}_x $$
$$ y = \mathbf{a}_y + t \cdot \vec{\mathbf{b}}_y $$
It is a hit if $x_0 < x < x_1$ and $y_0 < y < y_1$.
And the hit function is:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
bool xy_rect::hit(const ray& r, double t0, double t1, hit_record& rec) const {
auto t = (k-r.origin().z()) / r.direction().z();
if (t < t0 || t > t1)
return false;
auto x = r.origin().x() + t*r.direction().x();
auto y = r.origin().y() + t*r.direction().y();
if (x < x0 || x > x1 || y < y0 || y > y1)
return false;
rec.u = (x-x0)/(x1-x0);
rec.v = (y-y0)/(y1-y0);
rec.t = t;
vec3 outward_normal = vec3(0, 0, 1);
rec.set_face_normal(r, outward_normal);
rec.mat_ptr = mp;
rec.p = r.at(t);
return true;
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [xy-rect-hit]: [aarect.h] Hit function for XY rectangle objects]
If we set up a rectangle as a light:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
hittable_list simple_light() {
hittable_list objects;
auto pertext = make_shared(4);
objects.add(make_shared(vec3(0,-1000, 0), 1000, make_shared(pertext)));
objects.add(make_shared(vec3(0,2,0), 2, make_shared(pertext)));
auto difflight = make_shared(make_shared(vec3(4,4,4)));
objects.add(make_shared(vec3(0,7,0), 2, difflight));
objects.add(make_shared(3, 5, 1, 3, -2, difflight));
return objects;
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [rect-light]: [main.cc] A simple rectangle light]
We get:

Note that the light is brighter than $(1,1,1)$. This allows it to be bright enough to light things.
Fool around with making some spheres lights too.

Now let’s add the other two axes and the famous Cornell Box.
With unsurprising hit functions:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
bool xz_rect::hit(const ray& r, double t0, double t1, hit_record& rec) const {
auto t = (k-r.origin().y()) / r.direction().y();
if (t < t0 || t > t1)
return false;
auto x = r.origin().x() + t*r.direction().x();
auto z = r.origin().z() + t*r.direction().z();
if (x < x0 || x > x1 || z < z0 || z > z1)
return false;
rec.u = (x-x0)/(x1-x0);
rec.v = (z-z0)/(z1-z0);
rec.t = t;
vec3 outward_normal = vec3(0, 1, 0);
rec.set_face_normal(r, outward_normal);
rec.mat_ptr = mp;
rec.p = r.at(t);
return true;
}
bool yz_rect::hit(const ray& r, double t0, double t1, hit_record& rec) const {
auto t = (k-r.origin().x()) / r.direction().x();
if (t < t0 || t > t1)
return false;
auto y = r.origin().y() + t*r.direction().y();
auto z = r.origin().z() + t*r.direction().z();
if (y < y0 || y > y1 || z < z0 || z > z1)
return false;
rec.u = (y-y0)/(y1-y0);
rec.v = (z-z0)/(z1-z0);
rec.t = t;
vec3 outward_normal = vec3(1, 0, 0);
rec.set_face_normal(r, outward_normal);
rec.mat_ptr = mp;
rec.p = r.at(t);
return true;
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [xz-yz]: [aarect.h] XZ and YZ rectangle object hit functions]
Let’s make the 5 walls and the light of the box:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
hittable_list cornell_box() {
hittable_list objects;
auto red = make_shared(make_shared(vec3(0.65, 0.05, 0.05)));
auto white = make_shared(make_shared(vec3(0.73, 0.73, 0.73)));
auto green = make_shared(make_shared(vec3(0.12, 0.45, 0.15)));
auto light = make_shared(make_shared(vec3(15, 15, 15)));
objects.add(make_shared(0, 555, 0, 555, 555, green));
objects.add(make_shared(0, 555, 0, 555, 0, red));
objects.add(make_shared(213, 343, 227, 332, 554, light));
objects.add(make_shared(0, 555, 0, 555, 0, white));
objects.add(make_shared(0, 555, 0, 555, 555, white));
return objects;
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [cornell-box-empty]: [main.cc] Cornell box scene, empty]
And the view info:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
const auto aspect_ratio = double(image_width) / image_height;
...
vec3 lookfrom(278, 278, -800);
vec3 lookat(278,278,0);
vec3 vup(0,1,0);
auto dist_to_focus = 10.0;
auto aperture = 0.0;
auto vfov = 40.0;
camera cam(lookfrom, lookat, vup, vfov, aspect_ratio, aperture, dist_to_focus, 0.0, 1.0);
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [cornell-box-view]: [main.cc] Viewing parameters]
We get:

This is very noisy because the light is small. But we have a problem: some of the walls are facing
the wrong way. We haven't specified that a diffuse material should behave differently on different
faces of the object, but what if the Cornell box had a different pattern on the inside and outside
walls? The rectangle objects are described such that their front faces are always in the
$(1, 0, 0)$, $(0, 1, 0)$, or $(0, 0, 1)$ directions. We need a way to switch the faces of an
object. Let’s make a hittable that does nothing but hold another hittable, and flips the face:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
class flip_face : public hittable {
public:
flip_face(shared_ptr p) : ptr(p) {}
virtual bool hit(const ray& r, double t_min, double t_max, hit_record& rec) const {
if (!ptr->hit(r, t_min, t_max, rec))
return false;
rec.front_face = !rec.front_face;
return true;
}
virtual bool bounding_box(double t0, double t1, aabb& output_box) const {
return ptr->bounding_box(t0, t1, output_box);
}
public:
shared_ptr ptr;
};
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [flip-face]: [hittable.h] Flip-Face function]
This makes Cornell:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
hittable_list cornell_box() {
hittable_list objects;
auto red = make_shared(make_shared(vec3(0.65, 0.05, 0.05)));
auto white = make_shared(make_shared(vec3(0.73, 0.73, 0.73)));
auto green = make_shared(make_shared(vec3(0.12, 0.45, 0.15)));
auto light = make_shared(make_shared(vec3(15, 15, 15)));
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++ highlight
objects.add(make_shared(make_shared(0, 555, 0, 555, 555, green)));
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
objects.add(make_shared(0, 555, 0, 555, 0, red));
objects.add(make_shared(213, 343, 227, 332, 554, light));
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++ highlight
objects.add(make_shared(make_shared(0, 555, 0, 555, 555, white)));
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
objects.add(make_shared(0, 555, 0, 555, 0, white));
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++ highlight
objects.add(make_shared(make_shared(0, 555, 0, 555, 555, white)));
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
return objects;
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [cornell-box-flipped]: [main.cc] Empty Cornell box with flipped rectangles]
And voila:

Instances
====================================================================================================
The Cornell Box usually has two blocks in it. These are rotated relative to the walls. First, let’s
make an axis-aligned block primitive that holds 6 rectangles:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
class box: public hittable {
public:
box() {}
box(const vec3& p0, const vec3& p1, shared_ptr ptr);
virtual bool hit(const ray& r, double t0, double t1, hit_record& rec) const;
virtual bool bounding_box(double t0, double t1, aabb& output_box) const {
output_box = aabb(box_min, box_max);
return true;
}
public:
vec3 box_min;
vec3 box_max;
hittable_list sides;
};
box::box(const vec3& p0, const vec3& p1, shared_ptr ptr) {
box_min = p0;
box_max = p1;
sides.add(make_shared(p0.x(), p1.x(), p0.y(), p1.y(), p1.z(), ptr));
sides.add(make_shared(
make_shared(p0.x(), p1.x(), p0.y(), p1.y(), p0.z(), ptr)));
sides.add(make_shared(p0.x(), p1.x(), p0.z(), p1.z(), p1.y(), ptr));
sides.add(make_shared(
make_shared(p0.x(), p1.x(), p0.z(), p1.z(), p0.y(), ptr)));
sides.add(make_shared(p0.y(), p1.y(), p0.z(), p1.z(), p1.x(), ptr));
sides.add(make_shared(
make_shared(p0.y(), p1.y(), p0.z(), p1.z(), p0.x(), ptr)));
}
bool box::hit(const ray& r, double t0, double t1, hit_record& rec) const {
return sides.hit(r, t0, t1, rec);
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [box-class]: [box.h] A box object]
Now we can add two blocks (but not rotated)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
objects.add(make_shared(vec3(130, 0, 65), vec3(295, 165, 230), white));
objects.add(make_shared(vec3(265, 0, 295), vec3(430, 330, 460), white));
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [add-boxes]: [main.cc] Adding box objects]
This gives:

Now that we have boxes, we need to rotate them a bit to have them match the _real_ Cornell box. In
ray tracing, this is usually done with an _instance_. An instance is a geometric primitive that has
been moved or rotated somehow. This is especially easy in ray tracing because we don’t move
anything; instead we move the rays in the opposite direction. For example, consider a _translation_
(often called a _move_). We could take the pink box at the origin and add 2 to all its x components,
or (as we almost always do in ray tracing) leave the box where it is, but in its hit routine
subtract 2 off the x-component of the ray origin.
![Figure [ray-box]: Ray-box intersection with moved ray vs box](../images/fig.ray-box.jpg)
Whether you think of this as a move or a change of coordinates is up to you. The code for this, to
move any underlying hittable is a _translate_ instance.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
class translate : public hittable {
public:
translate(shared_ptr p, const vec3& displacement)
: ptr(p), offset(displacement) {}
virtual bool hit(const ray& r, double t_min, double t_max, hit_record& rec) const;
virtual bool bounding_box(double t0, double t1, aabb& output_box) const;
public:
shared_ptr ptr;
vec3 offset;
};
bool translate::hit(const ray& r, double t_min, double t_max, hit_record& rec) const {
ray moved_r(r.origin() - offset, r.direction(), r.time());
if (!ptr->hit(moved_r, t_min, t_max, rec))
return false;
rec.p += offset;
rec.set_face_normal(moved_r, rec.normal);
return true;
}
bool translate::bounding_box(double t0, double t1, aabb& output_box) const {
if (!ptr->bounding_box(t0, t1, output_box))
return false;
output_box = aabb(
output_box.min() + offset,
output_box.max() + offset);
return true;
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [translate-class]: [hittable.h] Hittable translation class]
Rotation isn’t quite as easy to understand or generate the formulas for. A common graphics tactic is
to apply all rotations about the x, y, and z axes. These rotations are in some sense axis-aligned.
First, let’s rotate by theta about the z-axis. That will be changing only x and y, and in ways that
don’t depend on z.
![Figure [rotz]: Rotation about the Z axis](../images/fig.rotz.jpg)
This involves some basic trigonometry that uses formulas that I will not cover here. That gives you
the correct impression it’s a little involved, but it is straightforward, and you can find it in any
graphics text and in many lecture notes. The result for rotating counter-clockwise about z is:
$$ x' = \cos(\theta) \cdot x - \sin(\theta) \cdot y $$
$$ y' = \sin(\theta) \cdot x + \cos(\theta) \cdot y $$
The great thing is that it works for any $\theta$ and doesn’t need any cases for quadrants or
anything like that. The inverse transform is the opposite geometric operation: rotate by $-\theta$.
Here, recall that $\cos(\theta) = \cos(-\theta)$ and $\sin(-\theta) = -\sin(\theta)$, so the
formulas are very simple.
Similarly, for rotating about y (as we want to do for the blocks in the box) the formulas are:
$$ x' = \cos(\theta) \cdot x + \sin(\theta) \cdot z $$
$$ z' = -\sin(\theta) \cdot x + \cos(\theta) \cdot z $$
And about the x-axis:
$$ y' = \cos(\theta) \cdot y - \sin(\theta) \cdot z $$
$$ z' = \sin(\theta) \cdot y + \cos(\theta) \cdot z $$
Unlike the situation with translations, the surface normal vector also changes, so we need to
transform directions too if we get a hit. Fortunately for rotations, the same formulas apply. If you
add scales, things get more complicated. See the web page https://in1weekend.blogspot.com/ for links
to that.
For a y-rotation class we have:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
class rotate_y : public hittable {
public:
rotate_y(shared_ptr p, double angle);
virtual bool hit(const ray& r, double t_min, double t_max, hit_record& rec) const;
virtual bool bounding_box(double t0, double t1, aabb& output_box) const {
output_box = bbox;
return hasbox;
}
public:
shared_ptr ptr;
double sin_theta;
double cos_theta;
bool hasbox;
aabb bbox;
};
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [rot-y]: [hittable.h] Hittable rotate-Y class]
With constructor:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
rotate_y::rotate_y(hittable *p, double angle) : ptr(p) {
auto radians = degrees_to_radians(angle);
sin_theta = sin(radians);
cos_theta = cos(radians);
hasbox = ptr->bounding_box(0, 1, bbox);
vec3 min( infinity, infinity, infinity);
vec3 max(-infinity, -infinity, -infinity);
for (int i = 0; i < 2; i++) {
for (int j = 0; j < 2; j++) {
for (int k = 0; k < 2; k++) {
auto x = i*bbox.max().x() + (1-i)*bbox.min().x();
auto y = j*bbox.max().y() + (1-j)*bbox.min().y();
auto z = k*bbox.max().z() + (1-k)*bbox.min().z();
auto newx = cos_theta*x + sin_theta*z;
auto newz = -sin_theta*x + cos_theta*z;
vec3 tester(newx, y, newz);
for (int c = 0; c < 3; c++) {
min[c] = ffmin(min[c], tester[c]);
max[c] = ffmax(max[c], tester[c]);
}
}
}
}
bbox = aabb(min, max);
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [rot-y-rot]: [hittable.h] Rotate-Y rotate method]
And the changes to Cornell are:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
shared_ptr box1 = make_shared(vec3(0, 0, 0), vec3(165, 330, 165), white);
box1 = make_shared(box1, 15);
box1 = make_shared(box1, vec3(265,0,295));
objects.add(box1);
shared_ptr box2 = make_shared(vec3(0,0,0), vec3(165,165,165), white);
box2 = make_shared(box2, -18);
box2 = make_shared(box2, vec3(130,0,65));
objects.add(box2);
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [scene-rot-y]: [main.cc] Cornell scene with Y-rotated boxes]
Which yields:

Volumes
====================================================================================================
One thing it’s nice to add to a ray tracer is smoke/fog/mist. These are sometimes called _volumes_
or _participating media_. Another feature that is nice to add is subsurface scattering, which is
sort of like dense fog inside an object. This usually adds software architectural mayhem because
volumes are a different animal than surfaces. But a cute technique is to make a volume a random
surface. A bunch of smoke can be replaced with a surface that probabilistically might or might not
be there at every point in the volume. This will make more sense when you see the code.
First, let’s start with a volume of constant density. A ray going through there can either scatter
inside the volume, or it can make it all the way through like the middle ray in the figure. More
thin transparent volumes, like a light fog, are more likely to have rays like the middle one. How
far the ray has to travel through the volume also determines how likely it is for the ray to make it
through.
![Figure [ray-vol]: Ray-volume interaction](../images/fig.ray-vol.jpg)
As the ray passes through the volume, it may scatter at any point. The denser the volume, the more
likely that is. The probability that the ray scatters in any small distance $\Delta L$ is:
$$ \text{probability} = C \cdot \Delta L $$
where $C$ is proportional to the optical density of the volume. If you go through all the
differential equations, for a random number you get a distance where the scattering occurs. If that
distance is outside the volume, then there is no “hit”. For a constant volume we just need the
density $C$ and the boundary. I’ll use another hittable for the boundary. The resulting class is:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
class constant_medium : public hittable {
public:
constant_medium(shared_ptr b, double d, shared_ptr a)
: boundary(b), neg_inv_density(-1/d)
{
phase_function = make_shared(a);
}
virtual bool hit(const ray& r, double t_min, double t_max, hit_record& rec) const;
virtual bool bounding_box(double t0, double t1, aabb& output_box) const {
return boundary->bounding_box(t0, t1, output_box);
}
public:
shared_ptr boundary;
shared_ptr phase_function;
double neg_inv_density;
};
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [const-med-class]: [constant_medium.h] Constant medium class]
The scattering function of isotropic picks a uniform random direction:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
class isotropic : public material {
public:
isotropic(shared_ptr a) : albedo(a) {}
virtual bool scatter(
const ray& r_in, const hit_record& rec, vec3& attenuation, ray& scattered
) const {
scattered = ray(rec.p, random_in_unit_sphere(), r_in.time());
attenuation = albedo->value(rec.u, rec.v, rec.p);
return true;
}
public:
shared_ptr albedo;
};
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [isotropic-class]: [material.h] The isotropic class]
And the hit function is:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
bool constant_medium::hit(const ray& r, double t_min, double t_max, hit_record& rec) const {
// Print occasional samples when debugging. To enable, set enableDebug true.
const bool enableDebug = false;
const bool debugging = enableDebug && random_double() < 0.00001;
hit_record rec1, rec2;
if (!boundary->hit(r, -infinity, infinity, rec1))
return false;
if (!boundary->hit(r, rec1.t+0.0001, infinity, rec2))
return false;
if (debugging) std::cerr << "\nt0=" << rec1.t << ", t1=" << rec2.t << '\n';
if (rec1.t < t_min) rec1.t = t_min;
if (rec2.t > t_max) rec2.t = t_max;
if (rec1.t >= rec2.t)
return false;
if (rec1.t < 0)
rec1.t = 0;
const auto ray_length = r.direction().length();
const auto distance_inside_boundary = (rec2.t - rec1.t) * ray_length;
const auto hit_distance = neg_inv_density * log(random_double());
if (hit_distance > distance_inside_boundary)
return false;
rec.t = rec1.t + hit_distance / ray_length;
rec.p = r.at(rec.t);
if (debugging) {
std::cerr << "hit_distance = " << hit_distance << '\n'
<< "rec.t = " << rec.t << '\n'
<< "rec.p = " << rec.p << '\n';
}
rec.normal = vec3(1,0,0); // arbitrary
rec.front_face = true; // also arbitrary
rec.mat_ptr = phase_function;
return true;
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [const-med-hit]: [constant_medium.h] Constant medium hit method]
The reason we have to be so careful about the logic around the boundary is we need to make sure this
works for ray origins inside the volume. In clouds, things bounce around a lot so that is a common
case.
In addition, the above code assumes that once a ray exits the constant medium boundary, it will
continue forever outside the boundary. Put another way, it assumes that the boundary shape is
convex. So this particular implementation will work for boundaries like boxes or spheres, but will
not work with toruses or shapes that contain voids. It's possible to write an implementation that
handles arbitrary shapes, but we'll leave that as an exercise for the reader.
If we replace the two blocks with smoke and fog (dark and light particles) and make the light bigger
(and dimmer so it doesn’t blow out the scene) for faster convergence:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
hittable_list cornell_smoke() {
hittable_list objects;
auto red = make_shared(make_shared(vec3(0.65, 0.05, 0.05)));
auto white = make_shared(make_shared(vec3(0.73, 0.73, 0.73)));
auto green = make_shared(make_shared(vec3(0.12, 0.45, 0.15)));
auto light = make_shared(make_shared(vec3(7, 7, 7)));
objects.add(make_shared(make_shared(0, 555, 0, 555, 555, green)));
objects.add(make_shared(0, 555, 0, 555, 0, red));
objects.add(make_shared(113, 443, 127, 432, 554, light));
objects.add(make_shared(make_shared(0, 555, 0, 555, 555, white)));
objects.add(make_shared(0, 555, 0, 555, 0, white));
objects.add(make_shared(make_shared(0, 555, 0, 555, 555, white)));
shared_ptr box1 = make_shared(vec3(0,0,0), vec3(165,330,165), white);
box1 = make_shared(box1, 15);
box1 = make_shared(box1, vec3(265,0,295));
shared_ptr box2 = make_shared(vec3(0,0,0), vec3(165,165,165), white);
box2 = make_shared(box2, -18);
box2 = make_shared(box2, vec3(130,0,65));
objects.add(
make_shared(box1, 0.01, make_shared(vec3(0,0,0))));
objects.add(
make_shared(box2, 0.01, make_shared(vec3(1,1,1))));
return objects;
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [cornell-smoke]: [main.cc] Cornell box, with smoke]
We get:

A Scene Testing All New Features
====================================================================================================
Let’s put it all together, with a big thin mist covering everything, and a blue subsurface
reflection sphere (we didn’t implement that explicitly, but a volume inside a dielectric is what a
subsurface material is). The biggest limitation left in the renderer is no shadow rays, but that is
why we get caustics and subsurface for free. It’s a double-edged design decision.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C++
hittable_list final_scene() {
hittable_list boxes1;
auto ground =
make_shared(make_shared(vec3(0.48, 0.83, 0.53)));
const int boxes_per_side = 20;
for (int i = 0; i < boxes_per_side; i++) {
for (int j = 0; j < boxes_per_side; j++) {
auto w = 100.0;
auto x0 = -1000.0 + i*w;
auto z0 = -1000.0 + j*w;
auto y0 = 0.0;
auto x1 = x0 + w;
auto y1 = random_double(1,101);
auto z1 = z0 + w;
boxes1.add(make_shared(vec3(x0,y0,z0), vec3(x1,y1,z1), ground));
}
}
hittable_list objects;
objects.add(make_shared(boxes1, 0, 1));
auto light = make_shared(make_shared(vec3(7, 7, 7)));
objects.add(make_shared(123, 423, 147, 412, 554, light));
auto center1 = vec3(400, 400, 200);
auto center2 = center1 + vec3(30,0,0);
auto moving_sphere_material =
make_shared(make_shared(vec3(0.7, 0.3, 0.1)));
objects.add(make_shared(center1, center2, 0, 1, 50, moving_sphere_material));
objects.add(make_shared(vec3(260, 150, 45), 50, make_shared(1.5)));
objects.add(make_shared(
vec3(0, 150, 145), 50, make_shared(vec3(0.8, 0.8, 0.9), 10.0)
));
auto boundary = make_shared(vec3(360, 150, 145), 70, make_shared(1.5));
objects.add(boundary);
objects.add(make_shared(
boundary, 0.2, make_shared(vec3(0.2, 0.4, 0.9))
));
boundary = make_shared(vec3(0, 0, 0), 5000, make_shared(1.5));
objects.add(make_shared(
boundary, .0001, make_shared(vec3(1,1,1))));
int nx, ny, nn;
auto tex_data = stbi_load("earthmap.jpg", &nx, &ny, &nn, 0);
auto emat = make_shared(make_shared(tex_data, nx, ny));
objects.add(make_shared(vec3(400,200, 400), 100, emat));
auto pertext = make_shared(0.1);
objects.add(make_shared(vec3(220,280, 300), 80, make_shared(pertext)));
hittable_list boxes2;
auto white = make_shared(make_shared(vec3(0.73, 0.73, 0.73)));
int ns = 1000;
for (int j = 0; j < ns; j++) {
boxes2.add(make_shared(vec3::random(0,165), 10, white));
}
objects.add(make_shared(
make_shared(
make_shared(boxes2, 0.0, 1.0), 15),
vec3(-100,270,395)
)
);
return objects;
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[Listing [scene-final]: [main.cc] Final scene]
Running it with 10,000 rays per pixel yields:

Now go off and make a really cool image of your own! See https://in1weekend.blogspot.com/ for
pointers to further reading and features, and feel free to email questions, comments, and cool
images to me at ptrshrl@gmail.com.
Acknowledgments
====================================================================================================
**Original Manuscript Help**
- Dave Hart
- Jean Buckley
**Web Release**
- Berna Kabadayı
- Lorenzo Mancini
- Lori Whippler Hollasch
- Ronald Wotzlaw
**Corrections and Improvements**
- Aaryaman Vasishta
- Andrew Kensler
- Apoorva Joshi
- Aras Pranckevičius
- Becker
- Ben Kerl
- Benjamin Summerton
- Bennett Hardwick
- Dan Drummond
- David Chambers
- David Hart
- Eric Haines
- Fabio Sancinetti
- Filipe Scur
- Frank He
- Gerrit Wessendorf
- Grue Debry
- Ingo Wald
- Jason Stone
- Jean Buckley
- Joey Cho
- Lorenzo Mancini
- Marcus Ottosson
- Matthew Heimlich
- Nakata Daisuke
- Paul Melis
- Phil Cristensen
- Ronald Wotzlaw
- Tatsuya Ogawa
- Thiago Ize
- Vahan Sosoyan
**Tools**
Thanks to the team at [Limnu][] for help on the figures.
Huge shout out to Morgan McGuire for his fantastic [Markdeep][] library.