Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Commit 9ee6b26

Browse files
committed
small edits + remove extra example
1 parent cdd7839 commit 9ee6b26

File tree

1 file changed

+2
-34
lines changed

1 file changed

+2
-34
lines changed

doc/python/webgl-vs-svg.md

Lines changed: 2 additions & 34 deletions
Original file line numberDiff line numberDiff line change
@@ -34,9 +34,6 @@ jupyter:
3434
thumbnail: thumbnail/webgl.jpg
3535
---
3636

37-
38-
39-
4037
## WebGL
4138

4239
`plotly` figures are rendered by web browsers, which broadly speaking have two families of capabilities for rendering graphics:
@@ -153,9 +150,9 @@ fig.show()
153150

154151
See https://plotly.com/python/reference/scattergl/ for more information and chart attribute options!
155152

156-
## Pandas and NumPy for Improved Performance
153+
## NumPy and NumPy Convertible Arrays for Improved Performance
157154

158-
Improve the performance of generating Plotly figures that use a large number of data points by using NumPy arrays and other objects that can be converted to NumPy arrays, such as Pandas Series and Index objects.
155+
Improve the performance of generating Plotly figures that use a large number of data points by using NumPy arrays and other objects that Plotly can convert to NumPy arrays, such as Pandas Series and Index objects.
159156

160157
Plotly.py uses Plotly.js for rendering, which supports typed arrays. In Plotly.py, NumPy array and NumPy-convertible arrays are base64 encoded before being passed to Plotly.js for rendering.
161158

@@ -217,32 +214,3 @@ fig = go.Figure(data=[go.Scatter3d(
217214

218215
fig.show()
219216
```
220-
221-
### Example with Multi-Dimensional Array
222-
223-
Here, we use a multi dimensional array with a `go.Surface` figure.
224-
225-
226-
```python
227-
import plotly.graph_objects as go
228-
import numpy as np
229-
230-
np.random.seed(1)
231-
232-
# Define the dimensions
233-
M = 100
234-
N = 200
235-
236-
x = np.arange(0, M, 1, dtype='int32')
237-
y = np.arange(0, N, 1, dtype='uint8')
238-
239-
z = np.random.random([N, M])
240-
241-
fig = go.Figure(data=[go.Surface(
242-
x=x,
243-
y=y,
244-
z=z
245-
)])
246-
247-
fig.show()
248-
```

0 commit comments

Comments
 (0)