diff --git a/doc/python/animations.md b/doc/python/animations.md index 4fc9b08e300..245f9a11b9e 100644 --- a/doc/python/animations.md +++ b/doc/python/animations.md @@ -5,12 +5,22 @@ jupyter: text_representation: extension: .md format_name: markdown - format_version: "1.1" - jupytext_version: 1.1.6 + format_version: '1.2' + jupytext_version: 1.6.0 kernelspec: display_name: Python 3 language: python name: python3 + language_info: + codemirror_mode: + name: ipython + version: 3 + file_extension: .py + mimetype: text/x-python + name: python + nbconvert_exporter: python + pygments_lexer: ipython3 + version: 3.7.6 plotly: description: An introduction to creating animations with Plotly in Python. display_as: animations @@ -37,6 +47,19 @@ px.scatter(df, x="gdpPercap", y="lifeExp", animation_frame="year", animation_gro log_x=True, size_max=55, range_x=[100,100000], range_y=[25,90]) ``` +#### Animated figures in Dash + +[Dash](https://plotly.com/dash/) is the best way to build analytical apps in Python using Plotly figures. To run the app below, run `pip install dash`, click "Download" to get the code and run `python app.py`. + +Get started with [the official Dash docs](https://dash.plotly.com/installation) and **learn how to effortlessly [style](https://plotly.com/dash/design-kit/) & [deploy](https://plotly.com/dash/app-manager/) apps like this with Dash Enterprise.** + + +```python hide_code=true +from IPython.display import IFrame +snippet_url = 'https://dash-gallery.plotly.host/python-docs-dash-snippets/' +IFrame(snippet_url + 'animations', width='100%', height=630) +``` + #### Animated Bar Charts with Plotly Express Note that you should always fix the `y_range` to ensure that your data remains visible throughout the animation. diff --git a/doc/python/candlestick-charts.md b/doc/python/candlestick-charts.md index a343c32742a..e621394114f 100644 --- a/doc/python/candlestick-charts.md +++ b/doc/python/candlestick-charts.md @@ -5,8 +5,8 @@ jupyter: text_representation: extension: .md format_name: markdown - format_version: '1.1' - jupytext_version: 1.1.1 + format_version: '1.2' + jupytext_version: 1.6.0 kernelspec: display_name: Python 3 language: python @@ -20,7 +20,7 @@ jupyter: name: python nbconvert_exporter: python pygments_lexer: ipython3 - version: 3.6.7 + version: 3.7.6 plotly: description: How to make interactive candlestick charts in Python with Plotly. Six examples of candlestick charts with Pandas, time series, and yahoo finance @@ -74,6 +74,19 @@ fig.update_layout(xaxis_rangeslider_visible=False) fig.show() ``` +#### Candlestick in Dash + +[Dash](https://plotly.com/dash/) is the best way to build analytical apps in Python using Plotly figures. To run the app below, run `pip install dash`, click "Download" to get the code and run `python app.py`. + +Get started with [the official Dash docs](https://dash.plotly.com/installation) and **learn how to effortlessly [style](https://plotly.com/dash/design-kit/) & [deploy](https://plotly.com/dash/app-manager/) apps like this with Dash Enterprise.** + + +```python hide_code=true +from IPython.display import IFrame +snippet_url = 'https://dash-gallery.plotly.host/python-docs-dash-snippets/' +IFrame(snippet_url + 'candlestick-charts', width='100%', height=630) +``` + #### Adding Customized Text and Annotations ```python @@ -144,4 +157,4 @@ fig.show() ``` #### Reference -For more information on candlestick attributes, see: https://plotly.com/python/reference/candlestick/ \ No newline at end of file +For more information on candlestick attributes, see: https://plotly.com/python/reference/candlestick/ diff --git a/doc/python/figure-structure.md b/doc/python/figure-structure.md index f7cafe29afa..1175ce36cec 100644 --- a/doc/python/figure-structure.md +++ b/doc/python/figure-structure.md @@ -6,7 +6,7 @@ jupyter: extension: .md format_name: markdown format_version: '1.2' - jupytext_version: 1.4.2 + jupytext_version: 1.6.0 kernelspec: display_name: Python 3 language: python @@ -20,7 +20,7 @@ jupyter: name: python nbconvert_exporter: python pygments_lexer: ipython3 - version: 3.7.7 + version: 3.7.6 plotly: description: The structure of a figure - data, traces and layout explained. display_as: file_settings @@ -49,6 +49,19 @@ print(fig) fig.show() ``` +### Accessing figure structures in Dash + +[Dash](https://plotly.com/dash/) is the best way to build analytical apps in Python using Plotly figures. To run the app below, run `pip install dash`, click "Download" to get the code and run `python app.py`. + +Get started with [the official Dash docs](https://dash.plotly.com/installation) and **learn how to effortlessly [style](https://plotly.com/dash/design-kit/) & [deploy](https://plotly.com/dash/app-manager/) apps like this with Dash Enterprise.** + + +```python hide_code=true +from IPython.display import IFrame +snippet_url = 'https://dash-gallery.plotly.host/python-docs-dash-snippets/' +IFrame(snippet_url + 'figure-structure', width='100%', height=630) +``` + ### Figures as Trees of Attributes Plotly.js supports inputs adhering to a well-defined schema, whose overall architecture is explained in this page and which is exhaustively documented in the [Figure Reference](/python/reference/index/) (which is itself generated from a [machine-readable JSON representation of the schema](https://raw.githubusercontent.com/plotly/plotly.js/master/dist/plot-schema.json)). Figures are represented as trees with named nodes called "attributes". The root node of the tree has three top-level attributes: `data`, `layout` and `frames` (see below). diff --git a/doc/python/plot-data-from-csv.md b/doc/python/plot-data-from-csv.md index 6e3c8258764..520866132f2 100644 --- a/doc/python/plot-data-from-csv.md +++ b/doc/python/plot-data-from-csv.md @@ -5,8 +5,8 @@ jupyter: text_representation: extension: .md format_name: markdown - format_version: "1.1" - jupytext_version: 1.2.0 + format_version: '1.2' + jupytext_version: 1.6.0 kernelspec: display_name: Python 3 language: python @@ -20,7 +20,7 @@ jupyter: name: python nbconvert_exporter: python pygments_lexer: ipython3 - version: 3.6.8 + version: 3.7.6 plotly: description: How to create charts from csv files with Plotly and Python display_as: advanced_opt @@ -56,6 +56,19 @@ fig = px.line(df, x = 'AAPL_x', y = 'AAPL_y', title='Apple Share Prices over tim fig.show() ``` +### Plot from CSV in Dash + +[Dash](https://plotly.com/dash/) is the best way to build analytical apps in Python using Plotly figures. To run the app below, run `pip install dash`, click "Download" to get the code and run `python app.py`. + +Get started with [the official Dash docs](https://dash.plotly.com/installation) and **learn how to effortlessly [style](https://plotly.com/dash/design-kit/) & [deploy](https://plotly.com/dash/app-manager/) apps like this with Dash Enterprise.** + + +```python hide_code=true +from IPython.display import IFrame +snippet_url = 'https://dash-gallery.plotly.host/python-docs-dash-snippets/' +IFrame(snippet_url + 'plot-data-from-csv', width='100%', height=630) +``` + ### Plot from CSV with `graph_objects` ```python diff --git a/doc/python/sankey-diagram.md b/doc/python/sankey-diagram.md index 5ce928345eb..9fe695f0049 100644 --- a/doc/python/sankey-diagram.md +++ b/doc/python/sankey-diagram.md @@ -6,7 +6,7 @@ jupyter: extension: .md format_name: markdown format_version: '1.2' - jupytext_version: 1.3.1 + jupytext_version: 1.6.0 kernel_info: name: python2 kernelspec: @@ -22,7 +22,7 @@ jupyter: name: python nbconvert_exporter: python pygments_lexer: ipython3 - version: 3.6.8 + version: 3.7.6 plotly: description: How to make Sankey Diagrams in Python with Plotly. display_as: basic @@ -104,6 +104,19 @@ fig.update_layout(title_text="Energy forecast for 2050
Source: Department of fig.show() ``` +### Sankey Diagram in Dash + +[Dash](https://plotly.com/dash/) is the best way to build analytical apps in Python using Plotly figures. To run the app below, run `pip install dash`, click "Download" to get the code and run `python app.py`. + +Get started with [the official Dash docs](https://dash.plotly.com/installation) and **learn how to effortlessly [style](https://plotly.com/dash/design-kit/) & [deploy](https://plotly.com/dash/app-manager/) apps like this with Dash Enterprise.** + + +```python hide_code=true +from IPython.display import IFrame +snippet_url = 'https://dash-gallery.plotly.host/python-docs-dash-snippets/' +IFrame(snippet_url + 'sankey-diagram', width='100%', height=630) +``` + ### Style Sankey Diagram This example also uses [hovermode](https://plotly.com/python/reference/layout/#layout-hovermode) to enable multiple tooltips.