@@ -26,12 +26,12 @@ Scatterplots of each pair of numeric variable are drawn on the left part of the
26
26
``` {r}
27
27
library(plotly)
28
28
library(GGally)
29
-
30
- data <- data.frame( var1 = 1:100 + rnorm(100,sd=20), v2 = 1:100 + rnorm(100,sd=27), v3 = rep(1, 100) + rnorm(100, sd = 1))
31
- data$v4 = data$var1 ** 2
32
- data$v5 = -(data$var1 ** 2)
33
-
34
- p <- ggpairs(data, title="correlogram with ggpairs()")
29
+
30
+ data <- data.frame( var1 = 1:100 + rnorm(100,sd=20), v2 = 1:100 + rnorm(100,sd=27), v3 = rep(1, 100) + rnorm(100, sd = 1))
31
+ data$v4 = data$var1 ** 2
32
+ data$v5 = -(data$var1 ** 2)
33
+
34
+ p <- ggpairs(data, title="correlogram with ggpairs()")
35
35
36
36
ggplotly(p)
37
37
```
@@ -46,14 +46,14 @@ he `ggcorr()` function allows to visualize the correlation of each pair of varia
46
46
``` {r}
47
47
library(plotly)
48
48
library(GGally)
49
-
50
- data <- data.frame( var1 = 1:100 + rnorm(100,sd=20), v2 = 1:100 + rnorm(100,sd=27), v3 = rep(1, 100) + rnorm(100, sd = 1))
51
- data$v4 = data$var1 ** 2
52
- data$v5 = -(data$var1 ** 2)
53
-
54
- p <- ggcorr(data, method = c("everything", "pearson"))
55
-
56
- p
49
+
50
+ data <- data.frame( var1 = 1:100 + rnorm(100,sd=20), v2 = 1:100 + rnorm(100,sd=27), v3 = rep(1, 100) + rnorm(100, sd = 1))
51
+ data$v4 = data$var1 ** 2
52
+ data$v5 = -(data$var1 ** 2)
53
+
54
+ p <- ggcorr(data, method = c("everything", "pearson"))
55
+
56
+ ggplotly(p)
57
57
```
58
58
59
59
<!-- ------------------- EXAMPLE BREAK ------------------------->
@@ -64,10 +64,10 @@ It is possible to use `ggplot2` aesthetics on the chart, for instance to color e
64
64
``` {r}
65
65
library(plotly)
66
66
library(GGally)
67
-
67
+
68
68
data(flea)
69
69
70
- p <- ggpairs(flea, columns = 2:4, ggplot2::aes(colour=species))
70
+ p <- ggpairs(flea, columns = 2:4, ggplot2::aes(colour=species))
71
71
72
72
ggplotly(p)
73
73
```
@@ -82,7 +82,7 @@ Change the type of plot used on each part of the `correlogram`. This is done wit
82
82
``` {r}
83
83
library(plotly)
84
84
library(GGally)
85
-
85
+
86
86
data(tips, package = "reshape")
87
87
88
88
p <- ggpairs(
@@ -91,7 +91,7 @@ p <- ggpairs(
91
91
lower = list(continuous = "points", combo = "dot_no_facet")
92
92
)
93
93
94
- p
94
+ ggplotly(p)
95
95
```
96
96
97
97
<!-- ------------------- EXAMPLE BREAK ------------------------->
0 commit comments