Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Commit b13f69c

Browse files
authored
DOC Directly import label class in example (scikit-learn#26876)
1 parent 889b829 commit b13f69c

File tree

1 file changed

+6
-6
lines changed

1 file changed

+6
-6
lines changed

sklearn/preprocessing/_label.py

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -56,8 +56,8 @@ class LabelEncoder(TransformerMixin, BaseEstimator):
5656
--------
5757
`LabelEncoder` can be used to normalize labels.
5858
59-
>>> from sklearn import preprocessing
60-
>>> le = preprocessing.LabelEncoder()
59+
>>> from sklearn.preprocessing import LabelEncoder
60+
>>> le = LabelEncoder()
6161
>>> le.fit([1, 2, 2, 6])
6262
LabelEncoder()
6363
>>> le.classes_
@@ -70,7 +70,7 @@ class LabelEncoder(TransformerMixin, BaseEstimator):
7070
It can also be used to transform non-numerical labels (as long as they are
7171
hashable and comparable) to numerical labels.
7272
73-
>>> le = preprocessing.LabelEncoder()
73+
>>> le = LabelEncoder()
7474
>>> le.fit(["paris", "paris", "tokyo", "amsterdam"])
7575
LabelEncoder()
7676
>>> list(le.classes_)
@@ -221,8 +221,8 @@ class LabelBinarizer(TransformerMixin, BaseEstimator):
221221
222222
Examples
223223
--------
224-
>>> from sklearn import preprocessing
225-
>>> lb = preprocessing.LabelBinarizer()
224+
>>> from sklearn.preprocessing import LabelBinarizer
225+
>>> lb = LabelBinarizer()
226226
>>> lb.fit([1, 2, 6, 4, 2])
227227
LabelBinarizer()
228228
>>> lb.classes_
@@ -233,7 +233,7 @@ class LabelBinarizer(TransformerMixin, BaseEstimator):
233233
234234
Binary targets transform to a column vector
235235
236-
>>> lb = preprocessing.LabelBinarizer()
236+
>>> lb = LabelBinarizer()
237237
>>> lb.fit_transform(['yes', 'no', 'no', 'yes'])
238238
array([[1],
239239
[0],

0 commit comments

Comments
 (0)