@@ -56,8 +56,8 @@ class LabelEncoder(TransformerMixin, BaseEstimator):
56
56
--------
57
57
`LabelEncoder` can be used to normalize labels.
58
58
59
- >>> from sklearn import preprocessing
60
- >>> le = preprocessing. LabelEncoder()
59
+ >>> from sklearn.preprocessing import LabelEncoder
60
+ >>> le = LabelEncoder()
61
61
>>> le.fit([1, 2, 2, 6])
62
62
LabelEncoder()
63
63
>>> le.classes_
@@ -70,7 +70,7 @@ class LabelEncoder(TransformerMixin, BaseEstimator):
70
70
It can also be used to transform non-numerical labels (as long as they are
71
71
hashable and comparable) to numerical labels.
72
72
73
- >>> le = preprocessing. LabelEncoder()
73
+ >>> le = LabelEncoder()
74
74
>>> le.fit(["paris", "paris", "tokyo", "amsterdam"])
75
75
LabelEncoder()
76
76
>>> list(le.classes_)
@@ -221,8 +221,8 @@ class LabelBinarizer(TransformerMixin, BaseEstimator):
221
221
222
222
Examples
223
223
--------
224
- >>> from sklearn import preprocessing
225
- >>> lb = preprocessing. LabelBinarizer()
224
+ >>> from sklearn.preprocessing import LabelBinarizer
225
+ >>> lb = LabelBinarizer()
226
226
>>> lb.fit([1, 2, 6, 4, 2])
227
227
LabelBinarizer()
228
228
>>> lb.classes_
@@ -233,7 +233,7 @@ class LabelBinarizer(TransformerMixin, BaseEstimator):
233
233
234
234
Binary targets transform to a column vector
235
235
236
- >>> lb = preprocessing. LabelBinarizer()
236
+ >>> lb = LabelBinarizer()
237
237
>>> lb.fit_transform(['yes', 'no', 'no', 'yes'])
238
238
array([[1],
239
239
[0],
0 commit comments