diff --git a/Doc/library/statistics.rst b/Doc/library/statistics.rst index 6e6ca7cef3391f..318e5d74611426 100644 --- a/Doc/library/statistics.rst +++ b/Doc/library/statistics.rst @@ -14,6 +14,7 @@ .. testsetup:: * from statistics import * + import math __name__ = '' -------------- @@ -741,6 +742,24 @@ However, for reading convenience, most of the examples show sorted sequences. *y = slope \* x + noise* + Continuing the example from :func:`correlation`, we look to see + how well a model based on major planets can predict the orbital + distances for dwarf planets: + + .. doctest:: + + >>> model = linear_regression(period_squared, dist_cubed, proportional=True) + >>> slope = model.slope + + >>> # Dwarf planets: Pluto, Eris, Makemake, Haumea, Ceres + >>> orbital_periods = [90_560, 204_199, 111_845, 103_410, 1_680] # days + >>> predicted_dist = [math.cbrt(slope * (p * p)) for p in orbital_periods] + >>> list(map(round, predicted_dist)) + [5912, 10166, 6806, 6459, 414] + + >>> [5_906, 10_152, 6_796, 6_450, 414] # actual distance in million km + [5906, 10152, 6796, 6450, 414] + .. versionadded:: 3.10 .. versionchanged:: 3.11