diff --git a/pyproject.toml b/pyproject.toml index 06bafb6..9969269 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -5,7 +5,7 @@ build-backend = "poetry.core.masonry.api" [project] name = "python-constraint2" # when set back to "python-constraint", don't forget to remove '2' in other places (e.g. README) description = "python-constraint is a module for efficiently solving CSPs (Constraint Solving Problems) over finite domains." -version = "2.2.0" # adhere to PEP440 versioning: https://packaging.python.org/en/latest/guides/distributing-packages-using-setuptools/#id55 +version = "2.2.1" # adhere to PEP440 versioning: https://packaging.python.org/en/latest/guides/distributing-packages-using-setuptools/#id55 authors = [ {name = "Gustavo Niemeyer", email = "gustavo@niemeyer.net"}, {name = "Sébastien Celles", email = "s.celles@gmail.com"}, @@ -35,6 +35,11 @@ classifiers = [ "Programming Language :: Cython", "Topic :: Scientific/Engineering", "Topic :: Software Development", + "Programming Language :: Python :: 3.9", + "Programming Language :: Python :: 3.10", + "Programming Language :: Python :: 3.11", + "Programming Language :: Python :: 3.12", + "Programming Language :: Python :: 3.13", ] # ATTENTION: if anything is changed here, run `poetry update` diff --git a/tests/test_util_benchmark.py b/tests/test_util_benchmark.py index 39b4ee0..97f37d9 100644 --- a/tests/test_util_benchmark.py +++ b/tests/test_util_benchmark.py @@ -109,8 +109,8 @@ def stddev(column, mean): benchmark_std = [stddev(column, mean) for column, mean in zip(transposed_data, benchmark_mean)] relative_std = [(s / abs(m)) if m != 0 else 0 for s, m in zip(benchmark_std, benchmark_mean)] - # calculate mean relative standard deviation and apply threshold (`max(np.mean(np_relative_std), 0.125)`) - mean_relative_std = max(sum(relative_std) / len(relative_std), 0.125) + # calculate mean relative standard deviation and apply threshold (`max(np.mean(np_relative_std), 0.25)`) + mean_relative_std = max(sum(relative_std) / len(relative_std), 0.25) # calculate performance factor (`np.mean(np_benchmark_mean / reference_microbenchmark_mean)`) performance_factor = sum(bm / rm for bm, rm in zip(benchmark_mean, reference_microbenchmark_mean)) / len(benchmark_mean)