diff --git a/control/__init__.py b/control/__init__.py index 7daa39b3e..57f2d2690 100644 --- a/control/__init__.py +++ b/control/__init__.py @@ -48,6 +48,7 @@ # Note: the functions we use are specified as __all__ variables in the modules from .bdalg import * from .delay import * +from .descfcn import * from .dtime import * from .freqplot import * from .lti import * diff --git a/control/descfcn.py b/control/descfcn.py new file mode 100644 index 000000000..236125b2e --- /dev/null +++ b/control/descfcn.py @@ -0,0 +1,483 @@ +# descfcn.py - describing function analysis +# +# RMM, 23 Jan 2021 +# +# This module adds functions for carrying out analysis of systems with +# memoryless nonlinear feedback functions using describing functions. +# + +"""The :mod:~control.descfcn` module contains function for performing +closed loop analysis of systems with memoryless nonlinearities using +describing function analysis. + +""" + +import math +import numpy as np +import matplotlib.pyplot as plt +import scipy +from warnings import warn + +from .freqplot import nyquist_plot + +__all__ = ['describing_function', 'describing_function_plot', + 'DescribingFunctionNonlinearity', 'friction_backlash_nonlinearity', + 'relay_hysteresis_nonlinearity', 'saturation_nonlinearity'] + +# Class for nonlinearities with a built-in describing function +class DescribingFunctionNonlinearity(): + """Base class for nonlinear systems with a describing function + + This class is intended to be used as a base class for nonlinear functions + that have an analytically defined describing function. Subclasses should + override the `__call__` and `describing_function` methods and (optionally) + the `_isstatic` method (should be `False` if `__call__` updates the + instance state). + + """ + def __init__(self): + """Initailize a describing function nonlinearity (optional)""" + pass + + def __call__(self, A): + """Evaluate the nonlinearity at a (scalar) input value""" + raise NotImplementedError( + "__call__() not implemented for this function (internal error)") + + def describing_function(self, A): + """Return the describing function for a nonlinearity + + This method is used to allow analytical representations of the + describing function for a nonlinearity. It turns the (complex) value + of the describing function for sinusoidal input of amplitude `A`. + + """ + raise NotImplementedError( + "describing function not implemented for this function") + + def _isstatic(self): + """Return True if the function has no internal state (memoryless) + + This internal function is used to optimize numerical computation of + the describing function. It can be set to `True` if the instance + maintains no internal memory of the instance state. Assumed False by + default. + + """ + return False + + # Utility function used to compute common describing functions + def _f(self, x): + return math.copysign(1, x) if abs(x) > 1 else \ + (math.asin(x) + x * math.sqrt(1 - x**2)) * 2 / math.pi + + +def describing_function( + F, A, num_points=100, zero_check=True, try_method=True): + """Numerical compute the describing function of a nonlinear function + + The describing function of a nonlinearity is given by magnitude and phase + of the first harmonic of the function when evaluated along a sinusoidal + input :math:`A \\sin \\omega t`. This function returns the magnitude and + phase of the describing function at amplitude :math:`A`. + + Parameters + ---------- + F : callable + The function F() should accept a scalar number as an argument and + return a scalar number. For compatibility with (static) nonlinear + input/output systems, the output can also return a 1D array with a + single element. + + If the function is an object with a method `describing_function` + then this method will be used to computing the describing function + instead of a nonlinear computation. Some common nonlinearities + use the :class:`~control.DescribingFunctionNonlinearity` class, + which provides this functionality. + + A : array_like + The amplitude(s) at which the describing function should be calculated. + + zero_check : bool, optional + If `True` (default) then `A` is zero, the function will be evaluated + and checked to make sure it is zero. If not, a `TypeError` exception + is raised. If zero_check is `False`, no check is made on the value of + the function at zero. + + try_method : bool, optional + If `True` (default), check the `F` argument to see if it is an object + with a `describing_function` method and use this to compute the + describing function. More information in the `describing_function` + method for the :class:`~control.DescribingFunctionNonlinearity` class. + + Returns + ------- + df : array of complex + The (complex) value of the describing function at the given amplitudes. + + Raises + ------ + TypeError + If A[i] < 0 or if A[i] = 0 and the function F(0) is non-zero. + + """ + # If there is an analytical solution, trying using that first + if try_method and hasattr(F, 'describing_function'): + try: + return np.vectorize(F.describing_function, otypes=[complex])(A) + except NotImplementedError: + # Drop through and do the numerical computation + pass + + # + # The describing function of a nonlinear function F() can be computed by + # evaluating the nonlinearity over a sinusoid. The Fourier series for a + # static nonlinear function evaluated on a sinusoid can be written as + # + # F(A\sin\omega t) = \sum_{k=1}^\infty M_k(A) \sin(k\omega t + \phi_k(A)) + # + # The describing function is given by the complex number + # + # N(A) = M_1(A) e^{j \phi_1(A)} / A + # + # To compute this, we compute F(A \sin\theta) for \theta between 0 and 2 + # \pi, use the identities + # + # \sin(\theta + \phi) = \sin\theta \cos\phi + \cos\theta \sin\phi + # \int_0^{2\pi} \sin^2 \theta d\theta = \pi + # \int_0^{2\pi} \cos^2 \theta d\theta = \pi + # + # and then integrate the product against \sin\theta and \cos\theta to obtain + # + # \int_0^{2\pi} F(A\sin\theta) \sin\theta d\theta = M_1 \pi \cos\phi + # \int_0^{2\pi} F(A\sin\theta) \cos\theta d\theta = M_1 \pi \sin\phi + # + # From these we can compute M1 and \phi. + # + + # Evaluate over a full range of angles (leave off endpoint a la DFT) + theta, dtheta = np.linspace( + 0, 2*np.pi, num_points, endpoint=False, retstep=True) + sin_theta = np.sin(theta) + cos_theta = np.cos(theta) + + # See if this is a static nonlinearity (assume not, just in case) + if not hasattr(F, '_isstatic') or not F._isstatic(): + # Initialize any internal state by going through an initial cycle + for x in np.atleast_1d(A).min() * sin_theta: + F(x) # ignore the result + + # Go through all of the amplitudes we were given + retdf = np.empty(np.shape(A), dtype=complex) + df = retdf # Access to the return array + df.shape = (-1, ) # as a 1D array + for i, a in enumerate(np.atleast_1d(A)): + # Make sure we got a valid argument + if a == 0: + # Check to make sure the function has zero output with zero input + if zero_check and np.squeeze(F(0.)) != 0: + raise ValueError("function must evaluate to zero at zero") + df[i] = 1. + continue + elif a < 0: + raise ValueError("cannot evaluate describing function for A < 0") + + # Save the scaling factor to make the formulas simpler + scale = dtheta / np.pi / a + + # Evaluate the function along a sinusoid + F_eval = np.array([F(x) for x in a*sin_theta]).squeeze() + + # Compute the prjections onto sine and cosine + df_real = (F_eval @ sin_theta) * scale # = M_1 \cos\phi / a + df_imag = (F_eval @ cos_theta) * scale # = M_1 \sin\phi / a + + df[i] = df_real + 1j * df_imag + + # Return the values in the same shape as they were requested + return retdf + + +def describing_function_plot( + H, F, A, omega=None, refine=True, label="%5.2g @ %-5.2g", **kwargs): + """Plot a Nyquist plot with a describing function for a nonlinear system. + + This function generates a Nyquist plot for a closed loop system consisting + of a linear system with a static nonlinear function in the feedback path. + + Parameters + ---------- + H : LTI system + Linear time-invariant (LTI) system (state space, transfer function, or + FRD) + F : static nonlinear function + A static nonlinearity, either a scalar function or a single-input, + single-output, static input/output system. + A : list + List of amplitudes to be used for the describing function plot. + omega : list, optional + List of frequencies to be used for the linear system Nyquist curve. + label : str, optional + Formatting string used to label intersection points on the Nyquist + plot. Defaults to "%5.2g @ %-5.2g". Set to `None` to omit labels. + + Returns + ------- + intersections : 1D array of 2-tuples or None + A list of all amplitudes and frequencies in which :math:`H(j\\omega) + N(a) = -1`, where :math:`N(a)` is the describing function associated + with `F`, or `None` if there are no such points. Each pair represents + a potential limit cycle for the closed loop system with amplitude + given by the first value of the tuple and frequency given by the + second value. + + Example + ------- + >>> H_simple = ct.tf([8], [1, 2, 2, 1]) + >>> F_saturation = ct.descfcn.saturation_nonlinearity(1) + >>> amp = np.linspace(1, 4, 10) + >>> ct.describing_function_plot(H_simple, F_saturation, amp) + [(3.344008947853124, 1.414213099755523)] + + """ + # Start by drawing a Nyquist curve + H_real, H_imag, H_omega = nyquist_plot(H, omega, plot=True, **kwargs) + H_vals = H_real + 1j * H_imag + + # Compute the describing function + df = describing_function(F, A) + N_vals = -1/df + + # Now add the describing function curve to the plot + plt.plot(N_vals.real, N_vals.imag) + + # Look for intersection points + intersections = [] + for i in range(N_vals.size - 1): + for j in range(H_vals.size - 1): + intersect = _find_intersection( + N_vals[i], N_vals[i+1], H_vals[j], H_vals[j+1]) + if intersect == None: + continue + + # Found an intersection, compute a and omega + s_amp, s_omega = intersect + a_guess = (1 - s_amp) * A[i] + s_amp * A[i+1] + omega_guess = (1 - s_omega) * H_omega[j] + s_omega * H_omega[j+1] + + # Refine the coarse estimate to get better intersection point + a_final, omega_final = a_guess, omega_guess + if refine: + # Refine the answer to get more accuracy + def _cost(x): + # If arguments are invalid, return a "large" value + # Note: imposing bounds messed up the optimization (?) + if x[0] < 0 or x[1] < 0: + return 1 + return abs(1 + H(1j * x[1]) * + describing_function(F, x[0]))**2 + res = scipy.optimize.minimize( + _cost, [a_guess, omega_guess]) + # bounds=[(A[i], A[i+1]), (H_omega[j], H_omega[j+1])]) + + if not res.success: + warn("not able to refine result; returning estimate") + else: + a_final, omega_final = res.x[0], res.x[1] + + # Add labels to the intersection points + if isinstance(label, str): + pos = H(1j * omega_final) + plt.text(pos.real, pos.imag, label % (a_final, omega_final)) + elif label is not None or label is not False: + raise ValueError("label must be formatting string or None") + + # Save the final estimate + intersections.append((a_final, omega_final)) + + return intersections + + +# Utility function to figure out whether two line segments intersection +def _find_intersection(L1a, L1b, L2a, L2b): + # Compute the tangents for the segments + L1t = L1b - L1a + L2t = L2b - L2a + + # Set up components of the solution: b = M s + b = L1a - L2a + detM = L1t.imag * L2t.real - L1t.real * L2t.imag + if abs(detM) < 1e-8: # TODO: fix magic number + return None + + # Solve for the intersection points on each line segment + s1 = (L2t.imag * b.real - L2t.real * b.imag) / detM + if s1 < 0 or s1 > 1: + return None + + s2 = (L1t.imag * b.real - L1t.real * b.imag) / detM + if s2 < 0 or s2 > 1: + return None + + # Debugging test + # np.testing.assert_almost_equal(L1a + s1 * L1t, L2a + s2 * L2t) + + # Intersection is within segments; return proportional distance + return (s1, s2) + + +# Saturation nonlinearity +class saturation_nonlinearity(DescribingFunctionNonlinearity): + """Create a saturation nonlinearity for use in describing function analysis + + This class creates a nonlinear function representing a saturation with + given upper and lower bounds, including the describing function for the + nonlinearity. The following call creates a nonlinear function suitable + for describing function analysis: + + F = saturation_nonlinearity(ub[, lb]) + + By default, the lower bound is set to the negative of the upper bound. + Asymmetric saturation functions can be created, but note that these + functions will not have zero bias and hence care must be taken in using + the nonlinearity for analysis. + + """ + def __init__(self, ub=1, lb=None): + # Create the describing function nonlinearity object + super(saturation_nonlinearity, self).__init__() + + # Process arguments + if lb == None: + # Only received one argument; assume symmetric around zero + lb, ub = -abs(ub), abs(ub) + + # Make sure the bounds are sensible + if lb > 0 or ub < 0 or lb + ub != 0: + warn("asymmetric saturation; ignoring non-zero bias term") + + self.lb = lb + self.ub = ub + + def __call__(self, x): + return np.clip(x, self.lb, self.ub) + + def _isstatic(self): + return True + + def describing_function(self, A): + # Check to make sure the amplitude is positive + if A < 0: + raise ValueError("cannot evaluate describing function for A < 0") + + if self.lb <= A and A <= self.ub: + return 1. + else: + alpha, beta = math.asin(self.ub/A), math.asin(-self.lb/A) + return (math.sin(alpha + beta) * math.cos(alpha - beta) + + (alpha + beta)) / math.pi + + +# Relay with hysteresis (FBS2e, Example 10.12) +class relay_hysteresis_nonlinearity(DescribingFunctionNonlinearity): + """Relay w/ hysteresis nonlinearity for use in describing function analysis + + This class creates a nonlinear function representing a a relay with + symmetric upper and lower bounds of magnitude `b` and a hysteretic region + of width `c` (using the notation from [FBS2e](https://fbsbook.org), + Example 10.12, including the describing function for the nonlinearity. + The following call creates a nonlinear function suitable for describing + function analysis: + + F = relay_hysteresis_nonlinearity(b, c) + + The output of this function is `b` if `x > c` and `-b` if `x < -c`. For + `-c <= x <= c`, the value depends on the branch of the hysteresis loop (as + illustrated in Figure 10.20 of FBS2e). + + """ + def __init__(self, b, c): + # Create the describing function nonlinearity object + super(relay_hysteresis_nonlinearity, self).__init__() + + # Initialize the state to bottom branch + self.branch = -1 # lower branch + self.b = b # relay output value + self.c = c # size of hysteresis region + + def __call__(self, x): + if x > self.c: + y = self.b + self.branch = 1 + elif x < -self.c: + y = -self.b + self.branch = -1 + elif self.branch == -1: + y = -self.b + elif self.branch == 1: + y = self.b + return y + + def _isstatic(self): + return False + + def describing_function(self, A): + # Check to make sure the amplitude is positive + if A < 0: + raise ValueError("cannot evaluate describing function for A < 0") + + if A < self.c: + return np.nan + + df_real = 4 * self.b * math.sqrt(1 - (self.c/A)**2) / (A * math.pi) + df_imag = -4 * self.b * self.c / (math.pi * A**2) + return df_real + 1j * df_imag + + +# Friction-dominated backlash nonlinearity (#48 in Gelb and Vander Velde, 1968) +class friction_backlash_nonlinearity(DescribingFunctionNonlinearity): + """Backlash nonlinearity for use in describing function analysis + + This class creates a nonlinear function representing a friction-dominated + backlash nonlinearity ,including the describing function for the + nonlinearity. The following call creates a nonlinear function suitable + for describing function analysis: + + F = friction_backlash_nonlinearity(b) + + This function maintains an internal state representing the 'center' of a + mechanism with backlash. If the new input is within `b/2` of the current + center, the output is unchanged. Otherwise, the output is given by the + input shifted by `b/2`. + + """ + + def __init__(self, b): + # Create the describing function nonlinearity object + super(friction_backlash_nonlinearity, self).__init__() + + self.b = b # backlash distance + self.center = 0 # current center position + + def __call__(self, x): + # If we are outside the backlash, move and shift the center + if x - self.center > self.b/2: + self.center = x - self.b/2 + elif x - self.center < -self.b/2: + self.center = x + self.b/2 + return self.center + + def _isstatic(self): + return False + + def describing_function(self, A): + # Check to make sure the amplitude is positive + if A < 0: + raise ValueError("cannot evaluate describing function for A < 0") + + if A <= self.b/2: + return 0 + + df_real = (1 + self._f(1 - self.b/A)) / 2 + df_imag = -(2 * self.b/A - (self.b/A)**2) / math.pi + return df_real + 1j * df_imag diff --git a/control/freqplot.py b/control/freqplot.py index ce337844a..0876f1dde 100644 --- a/control/freqplot.py +++ b/control/freqplot.py @@ -520,11 +520,11 @@ def gen_zero_centered_series(val_min, val_max, period): # Nyquist plot # -def nyquist_plot(syslist, omega=None, plot=True, omega_limits=None, - omega_num=None, label_freq=0, arrowhead_length=0.1, - arrowhead_width=0.1, color=None, *args, **kwargs): - """ - Nyquist plot for a system +def nyquist_plot( + syslist, omega=None, plot=True, omega_limits=None, omega_num=None, + label_freq=0, color=None, mirror='--', arrowhead_length=0.1, + arrowhead_width=0.1, *args, **kwargs): + """Nyquist plot for a system Plots a Nyquist plot for the system over a (optional) frequency range. @@ -643,11 +643,13 @@ def nyquist_plot(syslist, omega=None, plot=True, omega_limits=None, head_width=arrowhead_width, head_length=arrowhead_length) - plt.plot(x, -y, '-', color=c, *args, **kwargs) - ax.arrow( - x[-1], -y[-1], (x[-1]-x[-2])/2, (y[-1]-y[-2])/2, - fc=c, ec=c, head_width=arrowhead_width, - head_length=arrowhead_length) + if mirror is not False: + plt.plot(x, -y, mirror, color=c, *args, **kwargs) + ax.arrow( + x[-1], -y[-1], (x[-1]-x[-2])/2, (y[-1]-y[-2])/2, + fc=c, ec=c, head_width=arrowhead_width, + head_length=arrowhead_length) + # Mark the -1 point plt.plot([-1], [0], 'r+') diff --git a/control/iosys.py b/control/iosys.py index 50851cbf0..b1bfe9330 100644 --- a/control/iosys.py +++ b/control/iosys.py @@ -325,6 +325,10 @@ def __neg__(sys): # Return the newly created system return newsys + def _isstatic(self): + """Check to see if a system is a static system (no states)""" + return self.nstates == 0 + # Utility function to parse a list of signals def _process_signal_list(self, signals, prefix='s'): if signals is None: @@ -807,6 +811,42 @@ def __init__(self, updfcn, outfcn=None, inputs=None, outputs=None, # Initialize current parameters to default parameters self._current_params = params.copy() + # Return the value of a static nonlinear system + def __call__(sys, u, params=None, squeeze=None): + """Evaluate a (static) nonlinearity at a given input value + + If a nonlinear I/O system has not internal state, then evaluating the + system at an input `u` gives the output `y = F(u)`, determined by the + output function. + + Parameters + ---------- + params : dict, optional + Parameter values for the system. Passed to the evaluation function + for the system as default values, overriding internal defaults. + squeeze : bool, optional + If True and if the system has a single output, return the system + output as a 1D array rather than a 2D array. If False, return the + system output as a 2D array even if the system is SISO. Default + value set by config.defaults['control.squeeze_time_response']. + + """ + + # Make sure the call makes sense + if not sys._isstatic(): + raise TypeError( + "function evaluation is only supported for static " + "input/output systems") + + # If we received any parameters, update them before calling _out() + if params is not None: + sys._update_params(params) + + # Evaluate the function on the argument + out = sys._out(0, np.array((0,)), np.asarray(u)) + _, out = _process_time_response(sys, [], out, [], squeeze=squeeze) + return out + def _update_params(self, params, warning=False): # Update the current parameter values self._current_params = self.params.copy() diff --git a/control/tests/descfcn_test.py b/control/tests/descfcn_test.py new file mode 100644 index 000000000..d26e2c67a --- /dev/null +++ b/control/tests/descfcn_test.py @@ -0,0 +1,196 @@ +"""descfcn_test.py - test describing functions and related capabilities + +RMM, 23 Jan 2021 + +This set of unit tests covers the various operatons of the descfcn module, as +well as some of the support functions associated with static nonlinearities. + +""" + +import pytest + +import numpy as np +import control as ct +import math +from control.descfcn import saturation_nonlinearity, \ + friction_backlash_nonlinearity, relay_hysteresis_nonlinearity + + +# Static function via a class +class saturation_class: + # Static nonlinear saturation function + def __call__(self, x, lb=-1, ub=1): + return np.clip(x, lb, ub) + + # Describing function for a saturation function + def describing_function(self, a): + if -1 <= a and a <= 1: + return 1. + else: + b = 1/a + return 2/math.pi * (math.asin(b) + b * math.sqrt(1 - b**2)) + + +# Static function without a class +def saturation(x): + return np.clip(x, -1, 1) + + +# Static nonlinear system implementing saturation +@pytest.fixture +def satsys(): + satfcn = saturation_class() + def _satfcn(t, x, u, params): + return satfcn(u) + return ct.NonlinearIOSystem(None, outfcn=_satfcn, input=1, output=1) + + +def test_static_nonlinear_call(satsys): + # Make sure that the saturation system is a static nonlinearity + assert satsys._isstatic() + + # Make sure the saturation function is doing the right computation + input = [-2, -1, -0.5, 0, 0.5, 1, 2] + desired = [-1, -1, -0.5, 0, 0.5, 1, 1] + for x, y in zip(input, desired): + assert satsys(x) == y + + # Test squeeze properties + assert satsys(0.) == 0. + assert satsys([0.], squeeze=True) == 0. + np.testing.assert_array_equal(satsys([0.]), [0.]) + + # Test SIMO nonlinearity + def _simofcn(t, x, u, params): + return np.array([np.cos(u), np.sin(u)]) + simo_sys = ct.NonlinearIOSystem(None, outfcn=_simofcn, input=1, output=2) + np.testing.assert_array_equal(simo_sys([0.]), [1, 0]) + np.testing.assert_array_equal(simo_sys([0.], squeeze=True), [1, 0]) + + # Test MISO nonlinearity + def _misofcn(t, x, u, params={}): + return np.array([np.sin(u[0]) * np.cos(u[1])]) + miso_sys = ct.NonlinearIOSystem(None, outfcn=_misofcn, input=2, output=1) + np.testing.assert_array_equal(miso_sys([0, 0]), [0]) + np.testing.assert_array_equal(miso_sys([0, 0], squeeze=True), [0]) + + +# Test saturation describing function in multiple ways +def test_saturation_describing_function(satsys): + satfcn = saturation_class() + + # Store the analytic describing function for comparison + amprange = np.linspace(0, 10, 100) + df_anal = [satfcn.describing_function(a) for a in amprange] + + # Compute describing function for a static function + df_fcn = ct.describing_function(saturation, amprange) + np.testing.assert_almost_equal(df_fcn, df_anal, decimal=3) + + # Compute describing function for a describing function nonlinearity + df_fcn = ct.describing_function(satfcn, amprange) + np.testing.assert_almost_equal(df_fcn, df_anal, decimal=3) + + # Compute describing function for a static I/O system + df_sys = ct.describing_function(satsys, amprange) + np.testing.assert_almost_equal(df_sys, df_anal, decimal=3) + + # Compute describing function on an array of values + df_arr = ct.describing_function(satsys, amprange) + np.testing.assert_almost_equal(df_arr, df_anal, decimal=3) + + # Evaluate static function at a negative amplitude + with pytest.raises(ValueError, match="cannot evaluate"): + ct.describing_function(saturation, -1) + + # Create describing function nonlinearity w/out describing_function method + # and make sure it drops through to the underlying computation + class my_saturation(ct.DescribingFunctionNonlinearity): + def __call__(self, x): + return saturation(x) + satfcn_nometh = my_saturation() + df_nometh = ct.describing_function(satfcn_nometh, amprange) + np.testing.assert_almost_equal(df_nometh, df_anal, decimal=3) + + +@pytest.mark.parametrize("fcn, amin, amax", [ + [saturation_nonlinearity(1), 0, 10], + [friction_backlash_nonlinearity(2), 1, 10], + [relay_hysteresis_nonlinearity(1, 1), 3, 10], + ]) +def test_describing_function(fcn, amin, amax): + # Store the analytic describing function for comparison + amprange = np.linspace(amin, amax, 100) + df_anal = [fcn.describing_function(a) for a in amprange] + + # Compute describing function on an array of values + df_arr = ct.describing_function( + fcn, amprange, zero_check=False, try_method=False) + np.testing.assert_almost_equal(df_arr, df_anal, decimal=1) + + # Make sure the describing function method also works + df_meth = ct.describing_function(fcn, amprange, zero_check=False) + np.testing.assert_almost_equal(df_meth, df_anal) + + # Make sure that evaluation at negative amplitude generates an exception + with pytest.raises(ValueError, match="cannot evaluate"): + ct.describing_function(fcn, -1) + + +def test_describing_function_plot(): + # Simple linear system with at most 1 intersection + H_simple = ct.tf([1], [1, 2, 2, 1]) + omega = np.logspace(-1, 2, 100) + + # Saturation nonlinearity + F_saturation = ct.descfcn.saturation_nonlinearity(1) + amp = np.linspace(1, 4, 10) + + # No intersection + xsects = ct.describing_function_plot(H_simple, F_saturation, amp, omega) + assert xsects == [] + + # One intersection + H_larger = H_simple * 8 + xsects = ct.describing_function_plot(H_larger, F_saturation, amp, omega) + for a, w in xsects: + np.testing.assert_almost_equal( + H_larger(1j*w), + -1/ct.describing_function(F_saturation, a), decimal=5) + + # Multiple intersections + H_multiple = H_simple * ct.tf(*ct.pade(5, 4)) * 4 + omega = np.logspace(-1, 3, 50) + F_backlash = ct.descfcn.friction_backlash_nonlinearity(1) + amp = np.linspace(0.6, 5, 50) + xsects = ct.describing_function_plot(H_multiple, F_backlash, amp, omega) + for a, w in xsects: + np.testing.assert_almost_equal( + -1/ct.describing_function(F_backlash, a), + H_multiple(1j*w), decimal=5) + +def test_describing_function_exceptions(): + # Describing function with non-zero bias + with pytest.warns(UserWarning, match="asymmetric"): + saturation = ct.descfcn.saturation_nonlinearity(lb=-1, ub=2) + assert saturation(-3) == -1 + assert saturation(3) == 2 + + # Turn off the bias check + bias = ct.describing_function(saturation, 0, zero_check=False) + + # Function should evaluate to zero at zero amplitude + f = lambda x: x + 0.5 + with pytest.raises(ValueError, match="must evaluate to zero"): + bias = ct.describing_function(f, 0, zero_check=True) + + # Evaluate at a negative amplitude + with pytest.raises(ValueError, match="cannot evaluate"): + ct.describing_function(saturation, -1) + + # Describing function with bad label + H_simple = ct.tf([8], [1, 2, 2, 1]) + F_saturation = ct.descfcn.saturation_nonlinearity(1) + amp = np.linspace(1, 4, 10) + with pytest.raises(ValueError, match="formatting string"): + ct.describing_function_plot(H_simple, F_saturation, amp, label=1) diff --git a/doc/control.rst b/doc/control.rst index 500f6db3c..e8a29deb9 100644 --- a/doc/control.rst +++ b/doc/control.rst @@ -42,6 +42,7 @@ Frequency domain plotting :toctree: generated/ bode_plot + describing_function_plot nyquist_plot gangof4_plot nichols_plot @@ -85,6 +86,7 @@ Control system analysis :toctree: generated/ dcgain + describing_function evalfr freqresp margin @@ -139,14 +141,15 @@ Nonlinear system support .. autosummary:: :toctree: generated/ - find_eqpt - interconnect - linearize - input_output_response - ss2io - summing_junction - tf2io - flatsys.point_to_point + describing_function + find_eqpt + interconnect + linearize + input_output_response + ss2io + summing_junction + tf2io + flatsys.point_to_point .. _utility-and-conversions: diff --git a/doc/descfcn.rst b/doc/descfcn.rst new file mode 100644 index 000000000..240bbb894 --- /dev/null +++ b/doc/descfcn.rst @@ -0,0 +1,86 @@ +.. _descfcn-module: + +******************** +Describing functions +******************** + +For nonlinear systems consisting of a feedback connection between a +linear system and a static nonlinearity, it is possible to obtain a +generalization of Nyquist's stability criterion based on the idea of +describing functions. The basic concept involves approximating the +response of a static nonlinearity to an input :math:`u = A e^{j \omega +t}` as an output :math:`y = N(A) (A e^{j \omega t})`, where :math:`N(A) +\in \mathbb{C}` represents the (amplitude-dependent) gain and phase +associated with the nonlinearity. + +Stability analysis of a linear system :math:`H(s)` with a feedback +nonlinearity :math:`F(x)` is done by looking for amplitudes :math:`A` +and frequencies :math:`\omega` such that + +.. math:: + + H(j\omega) N(A) = -1 + +If such an intersection exists, it indicates that there may be a limit +cycle of amplitude :math:`A` with frequency :math:`\omega`. + +Describing function analysis is a simple method, but it is approximate +because it assumes that higher harmonics can be neglected. + +Module usage +============ + +The function :func:`~control.describing_function` can be used to +compute the describing function of a nonlinear function:: + + N = ct.describing_function(F, A) + +Stability analysis using describing functions is done by looking for +amplitudes :math:`a` and frequencies :math`\omega` such that + +.. math:: + + H(j\omega) = \frac{-1}{N(A)} + +These points can be determined by generating a Nyquist plot in which the +transfer function :math:`H(j\omega)` intersections the negative +reciprocal of the describing function :math:`N(A)`. The +:func:`~control.describing_function_plot` function generates this plot +and returns the amplitude and frequency of any points of intersection:: + + ct.describing_function_plot(H, F, amp_range[, omega_range]) + + +Pre-defined nonlinearities +========================== + +To facilitate the use of common describing functions, the following +nonlinearity constructors are predefined: + +.. code:: python + + backlash_nonlinearity(b) # backlash nonlinearity with width b + relay_hysteresis_nonlinearity(b, c) # relay output of amplitude b with + # hysteresis of half-width c + saturation_nonlinearity(ub[, lb]) # saturation nonlinearity with upper + # bound and (optional) lower bound + +Calling these functions will create an object `F` that can be used for +describing function analysis. For example, to create a saturation +nonlinearity:: + + F = ct.saturation_nonlinearity(1) + +These functions use the +:class:`~control.DescribingFunctionNonlinearity`, which allows an +analytical description of the describing function. + +Module classes and functions +============================ +.. autosummary:: + :toctree: generated/ + + ~control.DescribingFunctionNonlinearity + ~control.backlash_nonlinearity + ~control.relay_hysteresis_nonlinearity + ~control.saturation_nonlinearity diff --git a/doc/describing_functions.ipynb b/doc/describing_functions.ipynb new file mode 120000 index 000000000..14bcb69a4 --- /dev/null +++ b/doc/describing_functions.ipynb @@ -0,0 +1 @@ +../examples/describing_functions.ipynb \ No newline at end of file diff --git a/doc/examples.rst b/doc/examples.rst index b1ffdfce5..e56d46e70 100644 --- a/doc/examples.rst +++ b/doc/examples.rst @@ -42,5 +42,6 @@ using running examples in FBS2e. :maxdepth: 1 cruise + describing_functions steering pvtol-lqr-nested diff --git a/doc/index.rst b/doc/index.rst index 3edd7a6f6..3558b0b30 100644 --- a/doc/index.rst +++ b/doc/index.rst @@ -8,6 +8,7 @@ implements basic operations for analysis and design of feedback control systems. .. rubric:: Features - Linear input/output systems in state-space and frequency domain +- Nonlinear input/output system modeling, simulation, and analysis - Block diagram algebra: serial, parallel, and feedback interconnections - Time response: initial, step, impulse - Frequency response: Bode and Nyquist plots @@ -28,6 +29,7 @@ implements basic operations for analysis and design of feedback control systems. matlab flatsys iosys + descfcn examples * :ref:`genindex` diff --git a/examples/describing_functions.ipynb b/examples/describing_functions.ipynb new file mode 100644 index 000000000..7d090bf17 --- /dev/null +++ b/examples/describing_functions.ipynb @@ -0,0 +1,404 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Describing function analysis\n", + "Richard M. Murray, 27 Jan 2021\n", + "\n", + "This Jupyter notebook shows how to use the `descfcn` module of the Python Control Toolbox to perform describing function analysis of a nonlinear system. A brief introduction to describing functions can be found in [Feedback Systems](https://fbsbook.org), Section 10.5 (Generalized Notions of Gain and Phase)." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import control as ct\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import math" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Built-in describing functions\n", + "The Python Control Toobox has a number of built-in functions that provide describing functions for some standard nonlinearities. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Saturation nonlinearity\n", + "\n", + "A saturation nonlinearity can be obtained using the `ct.saturation_nonlinearity` function. This function takes the saturation level as an argument." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEWCAYAAAB42tAoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAvH0lEQVR4nO3dd5xU9fX/8debpXeBpYMgIM2GIrZYAQWEmB6NRtP0axITTTSKMWosiS3FxBJCjC0azS/RRESsqNhFUCzsUlZ6X0B623J+f9xLMgyzs7O7M3Nnd87z8ZjH3pl75973fGZ2ztz2uTIznHPOuao0ijqAc8653OaFwjnnXFJeKJxzziXlhcI551xSXiicc84l5YXCOedcUl4oXN5S4AFJn0maGXWeXCbpREnzo85RE5IelHRzOBxZfknnSnohimWnixeKNJG0RNKoLCznl5IeSfB4U0nrJbWu4/zT+jqy1S619DlgNNDTzEZEHSZV2WhTSSap/977Zva6mQ3M5DIzKcr8ZvaomZ2+935829YHXigajpOAOWa2Leog9ciBwBIz217TJ0pqnIE8WVGfs9c3DaatzcxvabgBS4BR4fC3gDeA3wCfAYuBsTHTvgrcAswENgNPAR3CcacAKxLNGxgD7AHKgG3AhzHT/A74aTjcHZgCbARKgAtjpnsQuDnm/n+XB/wNqAR2hvO/EugDGHARsApYDVxe2/klaLdTgBXhstaF8/8CMA5YEL6Gn8dMPwJ4G9gUTns30DRmvAE/BhYB64E7gEYJlvtdYBdQEWa7IXz8wrDNNoZt2D1u3j8EFgKLq/gc/BNYE76vrwFDk3xmvhXm3Bp+Rs4NH+8HvAxsCF/Do0D7JO9RlZ+ZcPiXwL+AR4AtwPeStWOY24Dt4TK+Hr8MYDDB53gTMBf4fNxn4h7gmfC1vQv0q6IN+oTLugBYFr7ea2LGNwPuJPjsrQqHm8V9di7nf5+dbyf6bCbIvwS4AvgofK/+ATSPGT8emBO+vreAw2LGTQQ+DV9bEfDFuPf0TeD3BJ+hm8PH3kjStp8AE2Lm0SRshyOi/l77b6aoAzSUG/sXijKCL50C4Pvhh1zh+FeBlcAhQCvgCeCRcNw+H+gE8/7l3mnjppkHDAyHZwD3As2BI4BSYGQ47r//PImWF7us8H6f8IP9WJj10HB+o2ozvwS5TwHKgevCf5ALw/n/HWgDDCX4Qj8onP4o4FigcZitGLgsZn4GvAJ0AHoTFJvvVbHs//4Dh/dPC/9BjyT4groLeC1u3i+G825RxTy/E+be+wU3p4rpWhF8ae99z7oRFhWgP8EmsWZAIcGXy51J3qNUPjNlBAW4EdAixXbsn2gZ4ftUAvwcaBq229aY1/IgwZfkiHD+jwKPV9EOfcJl/SXMdTiwGxgcjr8ReAfoHLbFW8BNcZ+dG8NM44AdwAHxn834NgrbZybBj6oO4eu/OBx3JEHhOYbg//eCcPq9Beqr4fMaEXzRbwe6xXymyoEfha+9Bft/zuLb9krgHzH3zwI+jvo7Lfbmm54yZ6mZ/cXMKoCHCL4IusSM/5uZfWLBZo9rga9JKqjNgiQdBDQxs/mSehFse7/KzHaZ2RzgPuCbdXkxBL+4t5vZx8ADwDl1nF+sMuBXZlYGPA50Av5gZlvNbC7BL9bDAMxstpm9Y2blZrYE+DNwctz8bjOzjWa2jODLOtWs5wL3m9n7ZrYbuBo4TlKfmGluCee9M9EMzOz+MPdugi/owyW1q2J5lcAhklqY2erwtWJmJWb2opntNrNSgrXF+NdYU2+b2X/MrNLMdqbYjlU5FmgN3Gpme8zsZWAq+7bzk2Y208zKCQrFEdXM84Yw14fAhwQFA4L35EYzWxe2xQ3s+1kuC8eXmdk0gl/pqe6L+KOZrTKzjcDTMRkvBP5sZu+aWYWZPURQvI4FMLN/hs+rNLN/EKxhxu7jWmVmd4Vtm/BzEucRYJyktuH9bxKsOeYMLxSZs2bvgJntCAdjdzQvjxleSvCLqFMtl3UmMC0c7g5sNLOtcfPvUct57xWft3sd5xdrQ1hQIdikArA2ZvxOwraTdLCkqZLWSNoC/Jr92622WbuH0wNgwf6eDezbdsvjn7SXpAJJt0r6NMy2JBy13/sa/kD4OnAxsFrSM5IGhfPpLOlxSSvD+TySaB41tE/uFNuxKt2B5WZWGfNY/GdsTczwDvb97CdS1fT7vCfs/35uCItRTZZV3TIPBC6XtGnvDei1d7mSzpc0J2bcIezbdlV+RhIxs1UEm6u+LKk9MJaguOYMLxTR6RUz3Jvgl9F6gtXYlntHhGsZhTHTJurudxzB9mAINnF1kNQmbv4rw+F95g90jZtXVd0Jx+ddVcf51dafCDazDTCztgSbPxQ3TVVZq7OK4EsCAEmtgI78r+0g+ev5BsFmg1FAO4LNKiTIF8zI7HkzG02wtjmPYPMLBPuvjGC7eFvgvLh5xGeo7jOT6DmptGNVVgG9JMV+f8R+xtJpn/eEmr2ftbWcYA23fcytpZk9JulAgvfpEqCjmbUn2MeQ7P1JxUME7/NXCdb+MtGWteaFIjrnSRoiqSXBNtZ/hb+qFwDNJZ0pqQnwC4Jt1XutBfrs/SeV1IJgtfdVADNbTrAd9xZJzSUdRrDjdu8vlDkEq7kdJHUFLovLtRY4KEHeayW1lDQU+DbBzr+6zK+22hBs298W/gL/foJpfibpgHAz3KUxWavzd+Dbko6Q1IzgV/a74aaZVLPtJlgLaRk+PyFJXSR9PixGuwk2mexdq2oT3t8kqQfws7inx7dpdZ+ZqrIma8dk79u7BMXpSklNJJ0CTCDYbJhujwG/kFQoqRPBvqz9Dg9Ps78AF0s6JjzXplXYtm0I9i0ZwX40JH2bYI2iJhK17X8I9o1cCjxcl/CZ4IUiOn8j2Nm2hmCn848BzGwz8AOC/QorCf4hV8Q875/h3w2S3gdGEvwC2RUzzTkEv2ZXAf8GrjezF2OW+yHBZpEX2P9L9BaCf8xNkq6IeXwGwQ7M6cBvzGzvCUS1nV9tXUHwy30rwT90oiLwFDCboIg9A/w1lRmb2XSC/UVPEBxB0w84uwbZHibYNLKS4GiYd5JM24jgaJ1VBDt+TyZ43yHYDn8kwdE4zwBPxj13nzZN4TOTSHXt+EvgoXAZX4sdYWZ7gM8TbCJZT3DgxPlmNq+aZdbGzcAsgqOTPgbeDx/LGDObRbCf4m6CoxZLCHZIY2ZFwG8JjhhbS3Bwx5s1XMQviWvbcF/GE0Bf9n+/I7f3KByXRZJeJThy6b40zOte4BMzu7fOwRLPvw/BoZtN4rYF5yRJRrA5pSTqLM7VhKTrgIPN7Lyos8RrGCeD5Lc5BEdsOOfqKUkdCDYR1/XoxIzwTU/1nJlNNrPVUedwztWOpAsJdqA/a2avRZ0nEd/05JxzLilfo3DOOZdUpPsoJI0B/kBwmvx9ZnZr3Ph2BIfC9SbI+hsze6C6+Xbq1Mn69OmT/sDOOddAzZ49e72ZxZ9/A0RYKMKTgu4h6NNmBfCepCnh4Wd7/RAoMrMJkgqB+ZIeDQ/Pq1KfPn2YNWtWxrI751xDI2lpVeOi3PQ0Aigxs0XhF//jBGe1xjKgjSQRnF6/kaDDLeecc1kSZaHowb59oqxg//6I7ibozngVwck2l8b1L+Occy7DoiwUifqViT8E6wyC8wS6E/TseHdMD4v7zky6SNIsSbNKS0vTmdM55/JalIViBft23taT/Tv7+jZBd8UWnmm7GBiUaGbh+QTDzWx4YWHC/THOOedqIcpC8R4wQFJfSU0J+tSZEjfNMoK+jJDUhaCf+UVZTemcc3kusqOezKxc0iXA8wSHx95vZnMlXRyOnwTcBDwo6WOCTVVXmdn6qDI751w+ivQ8ivCKVNPiHpsUM7wKOD3buZxzzv2PdwronEu7tz/dwNuf+sp/trVs1piLT+6X9vl6oXDOpdW7izZw/v3vUlZhKNVr5rm06NS6mRcK51xuW7phOxc/MpteHVry7x+cQLsWTaKO5NLAOwV0zqXFll1lfPehWRhw/wVHe5FoQLxQOOfqrLyikh8++j5L1m/nT+ceRZ9OraKO5NLINz055+rspqlFvL5wPbd9+VCO69cx6jguzXyNwjlXJ397ewkPvb2UC0/sy9eP7h11HJcBXiicc7X2+sJSfvl0ESMHdWbi2MFRx3EZ4oXCOVcrG7bt5pK/f8CAzq35wznDKGjkx8I2VF4onHO18rsXF7Btdzl3nTOM1s18d2dD5oXCOVdjRau28NjMZZx/3IEM6NIm6jguw7xQOOdqxMy4cepc2rVowmUjD446jssCLxTOuRp57pM1vLNoIz89fSDtWvpJdfnAC4VzLmW7yir41bRiBnVtwzlH96r+Ca5B8ELhnEvZfa8vYsVnO7lu/BAaF/jXR77wd9o5l5I1m3dx76ufMmZoV47v3ynqOC6LvFA451Jy+3PzKK80fj7OT6zLN14onHPVen/ZZzz5wUq+97m+9O7YMuo4LssiLRSSxkiaL6lE0sQqpjlF0hxJcyXNyHZG5/JdZaVxw9NFdG7TjB+c2j/qOC4CkZ1OKakAuAcYDawA3pM0xcyKYqZpD9wLjDGzZZI6RxLWuTz27w9W8uHyTfz2q4f7Gdh5Kso1ihFAiZktMrM9wOPAWXHTfAN40syWAZjZuixndC6vbdtdzm3PzePwXu354rAeUcdxEYmyUPQAlsfcXxE+Futg4ABJr0qaLen8qmYm6SJJsyTNKi0tzUBc5/LPva+UsG7rbq6fMIRG3ulf3oqyUCT61Fnc/cbAUcCZwBnAtZIS9hlgZpPNbLiZDS8sLExvUufy0LINO7jvjcV8cVgPjux9QNRxXISi3OC4Aog9tbMnsCrBNOvNbDuwXdJrwOHAguxEdC5//XpaMQUSV40ZFHUUF7Eo1yjeAwZI6iupKXA2MCVumqeAEyU1ltQSOAYoznJO5/LOWyXreW7uGn54aj+6tmsedRwXscjWKMysXNIlwPNAAXC/mc2VdHE4fpKZFUt6DvgIqATuM7NPosrsXD4or6jkxqlF9DygBd878aCo47gcEOmxbmY2DZgW99ikuPt3AHdkM5dz+eyx95Yzb81W/nTukTRvUhB1HJcD/Mxs59x/bd5Rxu9emM8xfTsw5pCuUcdxOcILhXPuv+6cvoDNO8u4bsIQJD8c1gW8UDjnAChZt5WH317K2SN6M7R7u6jjuBzihcI5h1nQn1PLpgVcPtovb+r25YXCOcfL89bx+sL1XDbqYDq2bhZ1HJdjvFA4l+f2lFdy8zPFHFTYivOPOzDqOC4HeaFwLs899NYSFq/fzrXjh9DEL2/qEvBPhXN5rHTrbv44fSGnDizk1IHei79LzAuFc3nsty/MZ2dZBb8YPyTqKC6HeaFwLk99snIz/5i1nG8d34d+ha2jjuNymBcK5/KQmXHj00Uc0LIpPxo5IOo4Lsd5oXAuDz3z8WpmLtnIFacPpF2LJlHHcTnOC4VzeWbnngpumTaPwd3a8vWje1X/BJf3vFA4l2cmv7aIlZt2cv2EIRT45U1dCrxQOJdHVm3ayZ9mlDDu0K4ce1DHqOO4esILhXN55Lbn5lFpcPXYwVFHcfWIFwrn8sSsJRt5as4q/u+kg+jVoWXUcVw9EmmhkDRG0nxJJZImJpnuaEkVkr6SzXzONRSVlUHvsF3bNuf7p/SLOo6rZyIrFJIKgHuAscAQ4BxJ+50eGk53G8G1tZ1ztfCv91fw8crNTBw7iJZNI70CsquHolyjGAGUmNkiM9sDPA6clWC6HwFPAOuyGc65hmLrrjJuf24+R/Zuz1lHdI86jquHoiwUPYDlMfdXhI/9l6QewBeBSdXNTNJFkmZJmlVaWprWoM7VZ/e88inrt+3m+glD/fKmrlaiLBSJPrEWd/9O4Cozq6huZmY22cyGm9nwwsLCdORzrt5bsn4797+xmC8f2ZPDe7WPOo6rp6LcWLkCiD0ttCewKm6a4cDj4a+gTsA4SeVm9p+sJHSunvvVtGKaFIirxgyMOoqrx6IsFO8BAyT1BVYCZwPfiJ3AzPruHZb0IDDVi4RzqXl9YSkvFq3lyjED6dy2edRxXD0WWaEws3JJlxAczVQA3G9mcyVdHI6vdr+Ecy6x8opKbppaRO8OLfnOCX2rf4JzSUR6nJyZTQOmxT2WsECY2beykcm5huDvM5exYO02Jp13FM2bFEQdx9Vzfma2cw3MZ9v38NsXFnB8v46cMbRL1HFcA+CFwrkG5s6XFrB1VxnXTRjih8O6tPBC4VwDMn/NVh55dxnnHnMgg7q2jTqOayC8UDjXQJgZN00tonWzxvx09MFRx3ENSLU7syU1Ag4HugM7gblmtjbTwZxzNfNS8TreKFnPLycM4YBWTaOO4xqQKguFpH7AVcAoYCFQCjQHDpa0A/gz8JCZVWYjqHOuarvLK7j5mSIGdG7NucceGHUc18AkW6O4GfgT8H9mtk/XGpI6E5wc903goczFc86l4oE3l7B0ww7+9t0RNCnwLcouvaosFGZ2TpJx6wj6YXLORWzd1l3cNX0howZ34cQB3s+ZS79qf3pIuklS45j7bSU9kNlYzrlU3fHcfPZUVHLNmX55U5cZqayjNgbelXSYpNMJ+miandlYzrlUfLRiE/96fwXfPqEvfTu1ijqOa6CqPerJzK6WNB14F/gMOMnMSjKezDmXlFlwedOOrZryo9P6Rx3HNWCpbHo6CfgDcCPwKnC3JL9MlnMRm/LhKmYv/YwrzxhEm+ZNoo7jGrBUOgX8DfBVMysCkPQl4GVgUCaDOeeqtmNPObc+O49De7TjK0f1jDqOa+BSKRTHxV5hzsyelDQjg5mcc9WYNGMRqzfv4q5zhtGokffn5DKryk1Pks6T1CjRZUjNbIOkfpI+l9l4zrl4Kzft5M8zPmXC4d0Z3qdD1HFcHki2RtER+EDSbIKjnPaemd0fOBlYD0zMeELn3D5umVaMBBPH+tZflx3JTrj7g6S7gdOAE4DDCPp6Kga+aWbLshPRObfXzMUbmfrRai4bNYAe7VtEHcfliaT7KMysQtIOM/tl7OOSTgC8UDiXRRWVxg1Pz6V7u+b830n9oo7j8kgqJ9zdleJjNSZpjKT5kkok7bcZS9K5kj4Kb29JOjwdy3WuPvrnrOXMXbWFq8cNpkVTv7ypy55kvcceBxwPFEr6acyotkCdP6WSCoB7gNHACuA9SVP2HoYbWgycbGafSRoLTAaOqeuynatvtuwq4zcvzOfoPgcw/rBuUcdxeSbZpqemQOtwmjYxj28BvpKGZY8ASsxsEYCkx4GzgP8WCjN7K2b6dwA/YNzlpbtfLmHD9j088K0RfnlTl3XJdmbPAGZIetDMlmZg2T2A5TH3V5B8beG7wLNVjZR0EXARQO/evdORz7mcsKh0Gw+8uZivHdWLQ3u2izqOy0OpnHC3Q9IdwFCCw2MBMLPT6rjsRD+LLMFjSDqVoFBUed6GmU0m2DTF8OHDE87HufroV88U06xxAVecMTDqKC5PpbIz+1FgHtAXuAFYQtCDbF2tAHrF3O8JrIqfSNJhwH3AWWa2IQ3Lda7emLGglOnz1vHjkf0pbNMs6jguT6VSKDqa2V+BMjObYWbfAY5Nw7LfAwZI6iupKXA2MCV2Akm9gScJzttYkIZlOldvlFVUctPUIvp0bMm3ju8bdRyXx1LZ9FQW/l0t6UyCX/113qlsZuWSLgGeJziK6n4zmyvp4nD8JOA6gjPE7w134JWb2fC6Ltu5+uCRd5ZSsm4b950/nKaN/fKmLjqpFIqbJbUDLic4f6It8JN0LNzMpgHT4h6bFDP8PeB76ViWc/XJxu17+P2LCzhxQCdGDu4cdRyX51K5cNHUcHAzcGpm4zjnAH734ny276nguvFD/HBYF7lULlx0e3id7CaSpktaL+m8bIRzLh8Vr97C399dxjePPZABXdpU/wTnMiyVDZ+nm9kWYDzBkUoHAz/LaCrn8pSZcePTRbRt0YTLRg2IOo5zQGqFYu81FscBj5nZxgzmcS6vPT93LW8v2sDlow+mfcumUcdxDkhtZ/bTkuYRdDH+A0mFwK7MxnIu/+wqq+BX04oY2KUN54zw3gVc7qh2jcLMJgLHAcPNrAzYQdAnk3Mujf76xmKWb9zJdROG0LjAD4d1uSOVNQrM7LOY4e3A9owlci4Prd2yi3teKeGMoV04oX+nqOM4tw//2eJcDrjtuXmUVxjXjBsSdRTn9uOFwrmIfbDsM558fyXfPbEvvTu2jDqOc/tJqVBIahv71zmXHpWVxg1PF1HYphk/PLV/1HGcSyjVNYpX4/4659LgP3NWMmf5Jq4aM4jWzVLaZehc1tV005P3JeBcmmzfXc6tz87j8J7t+NKwHlHHca5Kvo/CuYjc+2oJ67bu5roJQ2nUyH+DudzlhcK5CCzbsIO/vL6YLxzRnaMOPCDqOM4lVdNC4ZcYdS4Nfj2tmAKJq8YOijqKc9VKtVAo7q9zrpbe+nQ9z81dw/dP6Ue3di2ijuNctVItFF+P++ucq4XyikpufLqIHu1bcNFJB0Udx7mUpFQo9l6vOt3XrZY0RtJ8SSWSJiYYL0l/DMd/JOnIdC7fuWx7/L3lzFuzlWvOHEzzJgVRx3EuJZHtzJZUANwDjAWGAOdIiu+/YCwwILxdBPwpqyGdS6PNO8r47QvzGdG3A2MP6Rp1HOdSFuVRTyOAEjNbZGZ7gMfZv1fas4CHLfAO0F5St2wHdS4d7py+gE07y7h+gl/e1NUvqVwK9ZAMLbsHsDzm/orwsZpOA4CkiyTNkjSrtLQ0rUGdq6uSdVv529tLOfvo3gzt3i7qOM7VSCprFJMkzZT0A0nt07jsRD+p4g+/TWWa4EGzyWY23MyGFxYW1jmcc+liZtw4tZgWTQu44vSDo47jXI2lcuGizwHnAr2AWZL+Lml0Gpa9IpznXj2BVbWYxrmc9sr8dby2oJRLRw6gY+tmUcdxrsZSPeppIfAL4CrgZOCPkuZJ+lIdlv0eMEBSX0lNgbOBKXHTTAHOD49+OhbYbGar67BM57JqT3klN00t5qDCVpx/XJ+o4zhXK9V2VynpMODbwJnAi8AEM3tfUnfgbeDJ2izYzMolXQI8DxQA95vZXEkXh+MnAdOAcUAJwSVYv12bZTkXlYfeWsLi9dt54FtH07Sx95jj6qdU+jW+G/gL8HMz27n3QTNbJekXdVm4mU0jKAaxj02KGTbgh3VZhnNRWb9tN3+cvpCTDy7k1EGdo47jXK1VWyjM7KQk4/6W3jjONRy/fWE+O8squHa8X97U1W++LuxcBnyycjOPv7ecC47vQ//OraOO41ydeKFwLs3MjBufLuKAlk358cgBUcdxrs68UDiXZs98vJqZSzZyxekDadeiSdRxnKuzGl+kV9Kvgc3AfWa2If2RnKu/dpVVcMu0eQzu1pavH92r+ic4Vw/UZo1iJlAO/D7NWZyr9ya/toiVm3Zy3fghFPjlTV0DkUpfTyfE3jez/wDvmNn5mQrlXH20atNO7n21hHGHduW4fh2jjuNc2qSyRnFXio85l9due24elQZXjx0cdRTn0qrKfRSSjgOOBwol/TRmVFuCM6mdc6HZSzfy1JxV/Oi0/vTq0DLqOM6lVbKd2U2B1uE0bWIe3wJ8JZOhnKtPKiuNG54uokvbZlx8cr+o4ziXdlUWCjObAcyQ9KCZLc1iJufqlSfeX8FHKzbzu68dTqtmNT6Q0Lmcl8qn+kFJ+10DwsxOy0Ae5+qVrbvKuO25+Qzr3Z4vHJHwmlrO1XupFIorYoabA18mODzWubx3zyufsn7bbu67YDiN/HBY10Cl0ing7LiH3pQ0I0N5nKs3lm7Yzv1vLObLR/bkiF7to47jXMakcj2KDjF3GwFHAV0zlsi5euJXzxTTuEBcOWZg1FGcy6hUNj3NJrhOtQg2OS0GvpvJUM7lujcWrueForX87IyBdGnbPOo4zmVUKpue+mYjiHP1RXlFJTdOnUuvDi347uf838M1fKl04dFc0k8lPSnpCUk/kVSnn1CSOkh6UdLC8O8BCabpJekVScWS5kq6tC7LdC5d/j5zGQvWbuOacUNo3sTPPXUNXypdeDwMDCXotuNuYDBQ1yvbTQSmm9kAYHp4P145cLmZDQaOBX4oyS8V5iK1accefvfiAo7v15EzhnaJOo5zWZHKPoqBZnZ4zP1XJH1Yx+WeBZwSDj8EvApcFTuBma0GVofDWyUVAz2Aojou27lau/OlhWzZWcZ1E4Yg+eGwLj+kskbxgaRj996RdAzwZh2X2yUsBHsLQtIrz0vqAwwD3k0yzUWSZkmaVVpaWsd4zu1vwdqt/O2dpXzjmN4M6to26jjOZU0qaxTHAOdLWhbe7w0US/oYMDM7LNGTJL1E4sNor6lJQEmtgSeAy8xsS1XTmdlkYDLA8OHD9zuT3Lm6MDNumlpEq6YF/HS0Hw7r8ksqhWJMbWZsZqOqGidpraRuZrZaUjdgXRXTNSEoEo+a2ZO1yeFcOrxUvI7XF67n+glD6NCqadRxnMuqVDY93WxmS2NvsY/VcrlTgAvC4QuAp+InULAB+K9AsZn9rpbLca7OdpdXcPMzRfTv3Jrzjj0w6jjOZV0qhWJo7B1JjQnOzq6LW4HRkhYCo8P7SOouaVo4zQnAN4HTJM0Jb+PquFznauzBN5ewdMMOrh0/hCYFtbl6sHP1W7ILF10N/BxoIWkLwZnZAHsI9wXUlpltAEYmeHwVMC4cfiNmmc5FYt3WXdz1cgmjBnfm5IMLo47jXCSq/HlkZreYWRvgDjNra2ZtwltHM7s6ixmdi8xvnp/P7vIKrjnTT+Fx+SuVndnPSjop/kEzey0DeZzLGR+t2MQ/Z6/gwhMPom+nVlHHcS4yqRSKn8UMNwdGEHQU6Bcucg2WmXHj00V0bNWUS07rH3Uc5yKVSqeAE2LvS+oF3J6xRM7lgKc/Ws2spZ9x25cPpW3zJlHHcS5StTmEYwVwSLqDOJcrdu6p4JZpxRzSoy1fOapX1HGci1wqFy66i+B6FBAUliOAuvb15FzOmjTjU1Zv3sUfzxlGgV/e1LmU9lHMihkuBx4zs7r29eRcTlq5aSeTZnzK+MO6cXSfDtU/wbk8kEqh+AfQn2Ct4lMz25XZSM5F55ZpxUhw9bjBUUdxLmdUuY9CUmNJtxPsk3gIeARYLun2sA8m5xqUmYs3MvWj1fzfSf3o0b5F1HGcyxnJdmbfAXQA+prZUWY2DOgHtAd+k4VszmVNRaVxw9Nz6dauORef3C/qOM7llGSFYjxwoZlt3ftA2M339wm72XCuofjX7OXMXbWFq8cNpkVTv7ypc7GSFQozs/2u62BmFfzvKCjn6r0tu8q44/n5DD/wACYc1i3qOM7lnGSFokjS+fEPSjoPmJe5SM5l190vl7Bh+x6unzDUL2/qXALJjnr6IfCkpO8QdNlhwNFAC+CLWcjmXMYtXr+dB95czFeP6smhPdtFHce5nFRloTCzlcAxkk4juCaFgGfNbHq2wjmXab96pohmjQu44gy/vKlzVUmlr6eXgZezkMW5rJqxoJSXitdx9dhBdG7TPOo4zuUsv1yXy0tlFZXcNLWIPh1b8q0T+kQdx7mc5oXC5aVH3llKybpt/OLMITRr7IfDOpdMJIVCUgdJL0paGP49IMm0BZI+kDQ1mxldw7Vx+x5+/+ICThzQiZGDO0cdx7mcF9UaxURgupkNAKaH96tyKVCclVQuL/z+xQVs31PBteOH+OGwzqUgqkJxFkH/UYR/v5BoIkk9gTOB+7ITyzV089Zs4dF3l/LNYw/k4C5too7jXL0QVaHoYmarAcK/Va3/3wlcCVRWN0NJF0maJWlWaWlp2oK6hsPMuGFKEW1bNOGyUQOijuNcvZGxQiHpJUmfJLidleLzxwPrzGx2KtOb2WQzG25mwwsLC+uU3TVMz89dy9uLNnD56INp37Jp1HGcqzdSuR5FrZjZqKrGSVorqZuZrZbUDViXYLITgM9LGgc0B9pKesTMzstQZNeA7Sqr4NfTihnYpQ3njOgddRzn6pWoNj1NAS4Ihy8AnoqfwMyuNrOeZtYHOBt42YuEq63731zMso07uG7CEBoX+FHhztVEVP8xtwKjJS0ERof3kdRd0rSIMrkGau2WXdz9cgmnD+nCCf07RR3HuXonY5uekjGzDcDIBI+vIsG1LszsVeDVjAdzDdLtz82nvMK45ky/vKlzteHr4K5Bm7N8E0+8v4LvfK4vB3ZsFXUc5+olLxSuwTILLm9a2KYZl5zWP+o4ztVbXihcg/XUnFV8sGwTV54xkNbNItnK6lyD4IXCNUjbd5dzy7PFHNazHV8+smfUcZyr17xQuAZp0oxPWbtlN9dPGEqjRt6fk3N14YXCNTjLN+7gz68t4qwjunPUgVV2TOycS5EXCtfg3PJsMQUSE8cOijqKcw2CFwrXoLz96QamfbyG75/Sj27tWkQdx7kGwQuFazAqKoPDYXu0b8FFJx0UdRznGgwvFK7BePy9Zcxbs5WfjxtM8yZ+eVPn0sULhWsQNu8s47cvLGBEnw6MO7Rr1HGca1C8ULgG4Y/TF/LZjj1cN8Evb+pcunmhcPVeybptPPTWEs4+uheH9GgXdRznGhwvFK7eu/mZIlo0KeDy0wdGHcW5BskLhavXXpm3jlfnl3LpqAF0at0s6jjONUheKFy9tae8kpumFnFQp1acf1yfqOM412B5oXD11sNvL2HR+u38Yvxgmjb2j7JzmRLJf5ekDpJelLQw/JuwQx5J7SX9S9I8ScWSjst2Vpeb1m/bzR+mL+Tkgws5dWDnqOM416BF9TNsIjDdzAYA08P7ifwBeM7MBgGHA8VZyudy3G9fWMDOPRVcO36wHw7rXIZFVSjOAh4Khx8CvhA/gaS2wEnAXwHMbI+ZbcpSPpfD5q7azOPvLeP84/rQv3ObqOM41+BFVSi6mNlqgPBvom0HBwGlwAOSPpB0n6QqL3os6SJJsyTNKi0tzUxqF7ng8qZFtG/RhEtHDog6jnN5IWOFQtJLkj5JcDsrxVk0Bo4E/mRmw4DtVL2JCjObbGbDzWx4YWFhGl6By0XPfrKGmYs3cvnpA2nXsknUcZzLCxm7kLCZjapqnKS1krqZ2WpJ3YB1CSZbAawws3fD+/8iSaFwDd+usgp+9Uwxg7q24eyje0Udx7m8EdWmpynABeHwBcBT8ROY2RpguaS9p9uOBIqyE8/lor+8toiVm3Zy3YQhNC7ww2Gdy5ao/ttuBUZLWgiMDu8jqbukaTHT/Qh4VNJHwBHAr7Md1OWGNZt3ce+rnzL2kK4c369T1HGcyysZ2/SUjJltIFhDiH98FTAu5v4cYHj2krlcddtz86gw4+fjBkcdxbm84+vvLufNXvoZ//5gJRee2JdeHVpGHce5vOOFwuW0ykrjxqfn0rlNM35wSv+o4ziXl7xQuJz27w9W8uGKzUwcO4hWzSLZUupc3vNC4XLWtt3l3PbcPI7o1Z4vHNEj6jjO5S0vFC5n3ftKCeu27ub6CUNo1Mj7c3IuKl4oXE5atmEH972+mC8N68Gw3gk7F3bOZYkXCpdzdpdXcPk/59C4QFw5ZlDUcZzLe7530OUUM+PnT37Ce0s+4+5vDKNru+ZRR3Iu7/kahcspk2Ys4on3V/CTUQcz/rDuUcdxzuGFwuWQ5+eu4fbn5/H5w7vz45F+zoRzucILhcsJn6zczGWPz+Hwnu25/SuH+VXrnMshXihc5NZt2cWFD8/igJZNmHz+UTRvUhB1JOdcDN+Z7SK1q6yCCx+exeadZTzx/ePp3MZ3XjuXa7xQxJhw1xvsKquIOkZe2ba7nDVbdvGXbw5ncLe2UcdxziXghSJGv8JW7KmojDpG3jljaFdGDekSdQznXBW8UMS48+xhUUdwzrmc4zuznXPOJRVJoZDUQdKLkhaGfxN25iPpJ5LmSvpE0mOSfE+nc85lWVRrFBOB6WY2AJge3t+HpB7Aj4HhZnYIUACcndWUzjnnIisUZwEPhcMPAV+oYrrGQAtJjYGWwKrMR3POORcrqkLRxcxWA4R/O8dPYGYrgd8Ay4DVwGYzeyGrKZ1zzmWuUEh6Kdy3EH87K8XnH0Cw5tEX6A60knRekukvkjRL0qzS0tL0vAjnnHOZOzzWzEZVNU7SWkndzGy1pG7AugSTjQIWm1lp+JwngeOBR6pY3mRgMsDw4cOtrvmdc84Fotr0NAW4IBy+AHgqwTTLgGMltVTQQ9xIoDhL+ZxzzoVklv0f35I6Av8P6E1QEL5qZhsldQfuM7Nx4XQ3AF8HyoEPgO+Z2e4U5l8KLK1lvE7A+lo+N5M8V814rprxXDXTEHMdaGaFiUZEUihymaRZZjY86hzxPFfNeK6a8Vw1k2+5/Mxs55xzSXmhcM45l5QXiv1NjjpAFTxXzXiumvFcNZNXuXwfhXPOuaR8jcI551xSXiicc84llfeFQtIdkuZJ+kjSvyW1r2K6MZLmSyqRtF9vtxnI9dWwi/VKSVUe7iZpiaSPJc2RNCuHcmW7vVLtuj4r7VXd61fgj+H4jyQdmaksNcx1iqTNYfvMkXRdFjLdL2mdpE+qGB9VW1WXK+ttFS63l6RXJBWH/4uXJpgmvW1mZnl9A04HGofDtwG3JZimAPgUOAhoCnwIDMlwrsHAQOBVgq7Wq5puCdApi+1Vba6I2ut2YGI4PDHR+5it9krl9QPjgGcBAccC72bhvUsl1ynA1Gx9nsJlngQcCXxSxfist1WKubLeVuFyuwFHhsNtgAWZ/nzl/RqFmb1gZuXh3XeAngkmGwGUmNkiM9sDPE7QYWEmcxWb2fxMLqM2UsyV9fYi9a7rsyGV138W8LAF3gHah/2eRZ0r68zsNWBjkkmiaKtUckXCzFab2fvh8FaCro16xE2W1jbL+0IR5zsEVTheD2B5zP0V7P/GRMWAFyTNlnRR1GFCUbRXtV3Xh7LRXqm8/ijaKNVlHifpQ0nPShqa4UypyOX/v0jbSlIfYBjwbtyotLZZxnqPzSWSXgK6Jhh1jZk9FU5zDUGfUo8mmkWCx+p8XHEquVJwgpmtktQZeFHSvPCXUJS5st5eNZhN2tsrgVRef0baqBqpLPN9gj5/tkkaB/wHGJDhXNWJoq1SEWlbSWoNPAFcZmZb4kcneEqt2ywvCoUl6fIcQNIFwHhgpIUb+OKsAHrF3O9JGq62V12uFOexKvy7TtK/CTYv1OmLLw25st5eSq3r+oy0VwKpvP6MtFFdc8V+4ZjZNEn3SupkZlF2gBdFW1UryraS1ISgSDxqZk8mmCStbZb3m54kjQGuAj5vZjuqmOw9YICkvpKaEly7e0q2MlZFUitJbfYOE+yYT3iERpZF0V7Vdl2fxfZK5fVPAc4Pj045luAKjqszkKVGuSR1laRweATBd8SGDOeqThRtVa2o2ipc5l+BYjP7XRWTpbfNsr3HPtduQAnBtrw54W1S+Hh3YFrMdOMIji74lGATTKZzfZHgV8FuYC3wfHwugqNXPgxvc3MlV0Tt1RGYDiwM/3aIsr0SvX7gYuDicFjAPeH4j0lyZFuWc10Sts2HBAd3HJ+FTI8RXO64LPxsfTdH2qq6XFlvq3C5nyPYjPRRzPfWuEy2mXfh4ZxzLqm83/TknHMuOS8UzjnnkvJC4ZxzLikvFM4555LyQuGccy4pLxTOpUDStgzMs4+kb6R7vs6lmxcK56LTB/BC4XKeFwrnaiC8BsGrkv6l4Domj8acnbtE0m2SZoa3/uHjD0r6Ssw89q6d3AqcGF7L4CdJlnl0eE2B5uHZ5XMlHZLJ1+lcrLzo68m5NBsGDCXoO+dN4ATgjXDcFjMbIel84E6CPsSqMhG4wsySTYOZvSdpCnAz0AJ4xMxyoasWlyd8jcK5mptpZivMrJKg+4Q+MeMei/l7XBqXeSMwGhhOcJEm57LGC4VzNbc7ZriCfdfMLcFwOeH/WriZqmktltkBaE1wRbPmtXi+c7XmhcK59Pp6zN+3w+ElwFHh8FlAk3B4K8EXPwCSekiaXsV8JwPXElwv5bY05nWuWr6Pwrn0aibpXYIfYeeEj/0FeErSTIKebbeHj38ElEv6EHgQeJ1g7WMf4f6OcjP7u6QC4C1Jp5nZy5l9Kc4FvPdY59JE0hKC7pxrdeEaSZcAy8ws8mudOBfL1yicyxFmdnfUGZxLxNconHPOJeU7s51zziXlhcI551xSXiicc84l5YXCOedcUl4onHPOJfX/AdmwrwO1J6rYAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "saturation=ct.saturation_nonlinearity(0.75)\n", + "x = np.linspace(-2, 2, 50)\n", + "plt.plot(x, saturation(x))\n", + "plt.xlabel(\"Input, x\")\n", + "plt.ylabel(\"Output, y = sat(x)\")\n", + "plt.title(\"Input/output map for a saturation nonlinearity\");" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAzGklEQVR4nO3dd5wU9f3H8df77ui9ifQuvZ9YsGvsijWCxhYbxv4zGDVqYkzU2GLvGpUYERUVFXtBEREORYqAFEUQkSpF+vH5/TFzcT337ubgdufu9vN8PPZxt1M/O/vd+cx8Z+b7lZnhnHMuc2XFHYBzzrl4eSJwzrkM54nAOecynCcC55zLcJ4InHMuw3kicM65DOeJoBySdIqktxLem6SOUaYt4zg6S/pc0lpJF6diHUWst7WkdZKyU7DsgZLmhMs/pqyXX5lIel3S6XHHEZWktuFvJSd8H1v8kmZI2i+OdW8P+XMEP5P0DdAU2ArkA18CTwEPm9m2GOMyoJOZzU3zeh8D1pjZZSlezzfA2Wb2TirXE67rXWC0md2V6nWVFUlnEGyfvVK4jr8CHc3sd6laR6pJagt8DVQxs60xh/M/FWHb+hnBrx1lZnWANsDNwJ+Ax9K18oKjmXKiDTAj7iDK2HZ/pnL23URWUeOuiCrstjYzf4Uv4BvgoELDBgDbgB7h+2rAbcC3wA/Ag0CNcFxj4FXgR2Al8BGQFY5rBYwClgErgHvD4WcAHwP/Cuf5ezhsXEIMBlwMzAeWA7cmLDfZtEOBOcAq4D5+PvPLBm4Pl/E1cGE4fU6SbfEewVnRRmAdsAvwAcGRKaVddzj+HGAmsJbgbKsfMDzcvhvC9VwBtE2MC2gOjA63z1zgnIRl/hUYSXDmtpZgJ59bxPc7r9C6qkVY9vPAf4A1iZ89YZojgM/D8QuBvxZTvoorH1eG8RVsm2PD4V3D7yA/jPnHcHiU7+KC8Lv4Ohx2VxjjGmAysHc4/FBgM7AlXMcXhddBcNB4DbAAWBpu73rhuILv63SC38Vy4M/FbIcnwrLxWvh5PwU6JIzfE5gErA7/7pkw7gPgBoLfzFrgLaBxoThyksR/BjCO4Le7iqD8H5aw3HoEB3zfA98R/A6zw3EdCH4PK8LP9jRQv9B+40/AVGATkBMOOyjZtgVOBCYX2iaXAy/Ftu+La8Xl8UWSRBAO/xY4P/z/ToIdR0OgDvAKcFM47iaCxFAlfO0NiGAH/AXBzr4WUB3YK6GAbgUuCgtQDZL/qN8P19ka+KpwAS807atA/XDaZcCh4bihBDuZlkAD4B2KSASFf0hFvC/Nuk8Mf2C7htukI9Am2Xbn1z/oscD94XbrEy73wHDcXwl2lIeH2/kmYELU7zjCsrcAxxDsCGskWd5+QM9wfC+Cg4Njilh30vKRsH2ah8s5CfgJaJZsO5fiu3iboMwUHKj8DmhEUM4uB5YA1RM+63+KWgfwe4JE2R6oTXBQM7zQ9/UIQfntTbBD7FrEdniCIBEOCGN5GhgRjmtIsKM+NRw3JHzfKCGmeQQHJjXC9zcXUW4S4z8j/C7PISgn5wOLE7b/S8BDBL/PnYCJwHnhuI7AbwgOHJoAHwJ3FipTUwgO9mokDDso2bYNl7MycfsQHEwcH9e+z6uGolkMNJQkgoJ0mZmtNLO1wI3A4HC6LUAzgh3cFjP7yIJveQDBj3yYmf1kZhvNbFzi8s3sHjPbamYbiojhn+E6vyVIRkOKifdmM/sxnPZ9gh0cwG+Bu8xskZmtIqj6KmtFrfts4BYzm2SBuWa2oKSFSWoF7AX8KdxuU4BHCXYUBcaZ2Rgzyyc4w+gdJdCIy/7EzF4ys23Jvhsz+8DMpoXjpwLPAPsWscqiygdm9pyZLQ6X8yzBkfyAKJ+jGDeFZWZDuI7/mNmKsJzdTrBD6hxxWacAd5jZfDNbB1wFDC5UFXK9mW0wsy8IDnyK+x5GmdlEC+ryn+bncnIEMMfMhodxPgPMAo5KmPffZvZV+LlGJsxbkgVm9khYTp4k+C6aSmoKHAZcGv4+lxIctA0GCMvq22a2ycyWAXfw6+/4bjNbWMzv93/MbBPwLEFiRlJ3giT2asTPUeY8EUTTgiCDNwFqApMl/SjpR+CNcDgEVTZzgbckzZd0ZTi8FUEhLOoC1sIIMSROs4AgsRRlScL/6wmO4AjnSVxOlPWWVlHrbkVwJFdazYGCpFtgAcF3UtQ6q0esq42y7GK3kaTdJL0vaZmk1QRnXY2LmLyo8oGk0yRNSShXPYpZTlS/iF3S5ZJmSlodrqNeKdbRnGDbFFhAcMTeNGFYUd99MsWV0cIHCCV938WtJ+k6zWx9+G9tgutGVYDvE7b/QwRnBkjaSdIISd9JWkNQVVh4u5X2t/QkcHJ4cHkqMDJMELHwRFACSbsSFMJxBPWDG4DuZlY/fNUzs9oAZrbWzC43s/YERzD/J+lAgkLSupidk0UIpVXC/60JzlJK63uCaqFky4ziJ4JEWGDnUsy7kKCuNZniPn/B2VidhGGtCaqZdlSUZZf03fyXoKqwlZnVI6j6UbIJiyofktoQVKtcSFAFUh+YnrCcZDFE+S7+N5+kvQnqsX8LNAjXsbqEdSRaTLDDLNCaoErzhxLmK63C6ylYV1l830VZSFCV1Tjhd13XzLqH428i2D69zKwuwZF84e+4uO33q3FmNoHg2sHewMkEZ7Kx8URQBEl1JR0JjCCo35tmwS2kjwD/klRwtNBC0iHh/0dK6hhm+TUEF/jyCeobvwdullRLUnVJA0sZ0jBJDcLqjEsITi1LayRwSRhzfYIdQ2lMAY6TVDN8ruGsUsz7KPBHSf0V6BjuACHYmbRPNpOZLQTGAzeF261XuN6nSxl7qpZdh+CsYqOkAQQ/6qSKKR+1CHYWy8LpziQ4IyjwA9BSUtWEYVMo3XdRh2DHvQzIkXQdULfQOtpKKmqf8AxwmaR2kmoTVIk+W8xZ7vYaA+wi6WRJOZJOArqRwmoTM/ue4KLz7eHvPktSB0kF1T91CC/US2oBDCvlKoratk8B9wJbC1UVp50ngl97RdJagqOEPxPUB56ZMP5PBKf3E8LTxHf4uZ61U/h+HfAJcH9Yh5xPcATYkeDC8yKCC4Kl8TLBnR5TCO622J5bWh8hKPBTCS5OjeHnZyai+BfBUcwPBKe2kXeYZvYc8A+CI+i1BBfnGoajbwKuCU/L/5hk9iEEdaiLgReBv5jZ21HXXYIdXfYfgL+FZeY6gmRblKLKx5cEd3N9QrBtexLcFVPgPYK7oZZIWh4OK+138SbwOsGNBgsILrAnVmc8F/5dIemzJPM/TnDU+iHBHTcbCW5wKFNmtgI4kuBi9gqCu8iONLPlxc64404DqhLcTLGK4G6xZuG46wnucFtN8NsbVcplF7VthxMk/FjPBsAfKMtokg4DHjSzwqfizrkUk1SD4FbcfmY2J85Y/Iwgg0iqIenw8JS7BfAXgqNg51z6nQ9MijsJgJ8RZBRJNQnum+9CcNH7NeASM1sTa2DOZZiwWRURPHPyeczheCJwzrlM51VDzjmX4SpcA0mNGze2tm3bxh2Gc85VKJMnT15uZk2SjatwiaBt27bk5eXFHYZzzlUokops0sWrhpxzLsN5InDOuQznicA55zKcJwLnnMtwngiccy7DpSwRSHpc0lJJ04sYL0l3S5oraaqkfqmKxTnnXNFSeUbwBEF/nUU5jKA1xk7AucADKYzFOedcEVL2HIGZfSipbTGTDAKeCrvqmyCpvqRmYdvgZW72krW8NnV7+nJx5UWj2tUY1Kc59WtWLXli51xkcT5Q1oJftoe+KBz2q0Qg6VyCswZat269XSubu3Qd97w/d7vmdeWDGdz0+kyO6dOC0/ZoS7fmdUueyTlXojgTQbLu/JK2gGdmDwMPA+Tm5m5XK3lH9GrGEb2O2J5ZXTkxa8kanhy/gBc/X8SISQsZ0LYhp+/ZloO7N6VKtt/34Nz2ivPXs4hf9pnbku3rh9dliC471+Wm43ry6VUH8efDu/L9mg1c8N/P2O/WD5i7dF3c4TlXYcWZCEYDp4V3D+0OrE7V9QFXudSrWYVz9mnPB3/cn0dPy2XT1nzOeSqP1eu3xB2acxVSKm8ffYagD9bOkhZJOkvSUElDw0nGAPMJ+v99hKDvV+ciy84SB3VryoO/68+iVeu54L+fsTV/W9xhOVfhVLiOaXJzc81bH3WFjcxbyBXPT+WMPdvy16O7xx2Oc+WOpMlmlptsXIVrhtq5ZH6b24qvlqzl0XFf03nnOgwZsH13lzmXifxWC1dpXHV4V/bdpQnXvjSdT+eviDsc5yoMTwSu0sjOEncP6UvrRjU5/+nPWLhyfdwhOVcheCJwlUq9GlV47PRd2Zq/jbOfzGPdpq1xh+RcueeJwFU67RrX4r5T+jFn6VquHz0j7nCcK/c8EbhKae9OTTh/vw48N3kR73z5Q9zhOFeueSJwldYlB+5Cl53rcOWoaaz8aXPc4ThXbnkicJVW1Zws/nVSH1Zv2Mw1L02joj0z41y6eCJwlVrXZnW59KBdGDNtCaO/8KasnEvGE4Gr9M7bpz19W9fnupdn8MOajXGH41y544nAVXo52VncfmJvNm3N508vTPUqIucK8UTgMkL7JrW58tAufDB7GSMmLSx5BucyiCcClzFO26Mte3ZoxN9f/dKfOnYugScClzGyssStJ/YmS/IqIucSeCJwGaVF/RpceXgXxs9bwXOTF8UdjnPlgicCl3GG7NqaAW0b8o/XZrJ0rd9F5JwnApdxsrLETcf3ZMPmfK5/5cu4w3Eudp4IXEbq0KQ2Fx/Ykdemfu9tEbmM54nAZaxz9+lAl53rcO3L01m70Tu+d5nLE4HLWFVzsrjpuJ4sWbORW9+cHXc4zsXGE4HLaH1bN+CMPdsyfMICJi9YGXc4zsXCE4HLeH88uDPN69XgTy9MY9PW/LjDcS7tPBG4jFerWg5/P7YHc5eu4/7358UdjnNp54nAOWD/zjsxqE9zHvhgHnOXro07HOfSyhOBc6Frj+xGzWrZXD1qOtu2efMTLnN4InAu1Lh2Na4+rCsTv1nJyDxvodRlDk8EziU4Mbclu7VryI1jZrJs7aa4w3EuLTwROJdAEjce15ONW7bxt1e9+QmXGVKaCCQdKmm2pLmSrkwyvoGkFyVNlTRRUo9UxuNcFB2a1OaC/TvyyheL+WD20rjDcS7lUpYIJGUD9wGHAd2AIZK6FZrsamCKmfUCTgPuSlU8zpXG0P3a06FJLa55aTrrN2+NOxznUiqVZwQDgLlmNt/MNgMjgEGFpukGvAtgZrOAtpKapjAm5yKplpPNTcf1YtGqDdz5zpy4w3EupVKZCFoAibdeLAqHJfoCOA5A0gCgDdCy8IIknSspT1LesmXLUhSuc780oF1DBu/aisfGfc2MxavjDse5lImUCMK6/O6S2kuKmjyUZFjhm7NvBhpImgJcBHwO/Oo83MweNrNcM8tt0qRJxNU7t+OuOqwrDWpW4apR08j3ZwtcJVXkTl1SPUlXS5oGTAAeAkYCCyQ9J2n/Epa9CGiV8L4lsDhxAjNbY2ZnmlkfgmsETYCvS/8xnEuNejWrcN1R3Zm6aDVPjP8m7nCcS4niju6fJ6ja2dvMOpvZXuFReSvgn8AgSWcVM/8koJOkdpKqAoOB0YkTSKofjgM4G/jQzNZs96dxLgWO6tWM/To34fa3ZrNo1fq4w3GuzBWZCMzsN2Y23Mx+TDIuz8wuNbPHipl/K3Ah8CYwExhpZjMkDZU0NJysKzBD0iyCu4su2YHP4lxKSOLvxwR3Nl/70nTMvIrIVS45pZlYUgdgCDDYzEq859/MxgBjCg17MOH/T4BOpYnBuTi0bFCTyw/uzA2vfskrU7/n6N7N4w7JuTJT4oVfSc0kXSppIjADyCZIBs5llDP2bEuvlvX42ysz+HH95rjDca7MFHex+BxJ7wFjgcYEdfjfm9n1ZjYtXQE6V15kZ4mbj+vFqvVbuHHMzLjDca7MFHdGcB/B0f/JZnaNmU3l17d/OpdRujWvyzl7t2dk3iLGz1sedzjOlYniEkFzgqeB7wjbC7oBqJKesJwrvy49qBNtGtXk6lHT2LjFu7Z0FV9xdw0tN7MHzGwf4EBgNbBU0kxJN6YtQufKmepVsvnHMT35ZsV67nnPm59wFV+kp4TNbJGZ3WZm/YFjAG+o3WW0vTo15vh+LXlo7Hxmfu+PvriKrbiLxXslG25ms83sekl1vdlol8muOaIr9WtW4Yrnp7I1f1vc4Ti33Yo7Izhe0nhJ10k6QtIASftI+r2k4cCrQI00xelcudOgVlWuP7oH075bzaPjvGUUV3EV+UCZmV0mqQFwAnAi0AzYQPCU8ENmNi49ITpXfh3ec2cO7taUf739FQd3a0r7JrXjDsm5UlNFe1w+NzfX8vLy4g7Duf9ZumYjB90xli4712XEubuTlZWs4V3n4iVpspnlJhtX5BmBpNOKW6iZPbWjgTlXGexUtzrXHNmNK56fytOfLuDUPdrGHZJzpVJcW0O7Jhkm4CiCDmY8ETgXOrF/S175YjE3vz6L/bvsRMsGNeMOybnIinuO4KKCF3Ax8CmwL0HfBP3SFJ9zFYIkbjy2Jwb8+UVvodRVLMU+RyApR9LZwJfAQcAJZnZS2NyEcy5Bq4Y1ueKQzoz9ahmjPvsu7nCci6y45wguIEgA/YFDzewMM5udtsicq4BO26MtuW0a8LdXv2Tp2o1xh+NcJMWdEdwD1AX2Al6RNDV8TZPkZwTOJZGVJf55Qi82bMn3TmxchVHcxeJ2aYvCuUqkQ5PaXP6bXbjp9VmM/mIxg/q0iDsk54pV3ANlC9IZiHOVydl7t+fNGUu47uUZ7NG+ETvVrR53SM4VKVKjc8650snOEred2JuNW/K5atQ0ryJy5ZonAudSpH2T2lxxaBfenbWUF/wuIleOeSJwLoXO3LMtA9o25PpXZvD96g1xh+NcUqVOBJKelPSAN0HtXMmyssQtJ/Ria75x5QteReTKp+05I7gXeAc4tYxjca5Satu4Flce1oWxXy1jZN7CuMNx7ldKnQjMbJKZvWBmf0pFQM5VRqfu3obd2zfkhldnsmjV+rjDce4XSkwEknaR9IiktyS9V/BKR3DOVRZZWeLWE3qzzYwrnp/Ktm1eReTKjyhnBM8BnwHXAMMSXs65UmjVsCbXHtmN8fNW8PjH3qOZKz+Ke7K4wFYzeyDlkTiXAQbv2op3Zy7lljdns3enJnTeuU7cITkX6YzgFUl/kNRMUsOCV8ojc64SksTNx/ekbvUcLhnxOZu25scdknOREsHpBFVB44HJ4StSX5GSDpU0W9JcSVcmGV9P0iuSvpA0Q9KZpQneuYqoce1q/PP4XsxaspY73voq7nCcK7lqyMy2q/E5SdnAfcBvgEXAJEmjzezLhMkuAL40s6MkNQFmS3razDZvzzqdqygO7NqUIQNa8/BH89m/y07s3r5R3CG5DBblrqEqki6W9Hz4ulBSlQjLHgDMNbP54Y59BDCo0DQG1JEkoDawEthays/gXIV0zRFdadOwJpeP/II1G7fEHY7LYFGqhh4g6Jzm/vDVPxxWkhZA4tMzi8Jhie4FugKLgWnAJWa2rfCCJJ0rKU9S3rJlyyKs2rnyr1a1HP51Uh+WrNnIX16eEXc4LoNFSQS7mtnpZvZe+DqT5B3bF6YkwwrfPH0IMAVoDvQB7pVU91czmT1sZrlmltukSZMIq3auYujbugEX7t+RFz//jlenLo47HJehoiSCfEkdCt5Iag9EudVhEdAq4X1LgiP/RGcCoywwF/ga6BJh2c5VGhce0JE+repz9ahpfPejN0zn0i9KIhgGvC/pA0ljgfeAyyPMNwnoJKmdpKrAYGB0oWm+BQ4EkNQU6AzMjxq8c5VBlews7hrch20Gl474nK35v6oddS6lSkwEZvYu0Am4OHx1NrP3I8y3FbgQeBOYCYw0sxmShkoaGk52A7CnpGnAu8CfzGz59n0U5yquNo1q8fdjejDpm1Xc/d7cuMNxGabI20clHWBm70k6rtCoDpIws1ElLdzMxgBjCg17MOH/xcDBpYzZuUrpmL4t+GjOcu59bw57dmjkt5S6tCnujGDf8O9RSV5Hpjgu5zLS3wZ1p02jWlw6YgqrfvLHaVx6qKSOMiS1M7OvSxqWLrm5uZaXF+nBZucqpOnfrebY+z9m31124pHT+hM8ZuPcjpE02cxyk42LcrH4hSTDnt+xkJxzRenRoh5XHtaVd2b+wPAJC+IOx2WA4q4RdAG6A/UKXSeoC1RPdWDOZbLfD2zLuDnL+PtrM8lt05BuzX/1eI1zZaa4M4LOBNcC6vPL6wP9gHNSHplzGUwSt53Ym3o1qnDRM5/x0yZvecWlTpFnBGb2MvCypD3M7JM0xuScAxrVrsadJ/Xhd499yjUvTeeO3/b26wUuJaJcIxgqqX7BG0kNJD2eupCccwUGdmzMpQfuwouff8czE73je5caURJBLzP7seCNma0C+qYsIufcL1x0QEf27tSYv74yg+nfrY47HFcJRUkEWZIaFLwJeyeL0sWlc64MZGWJO0/qQ8OaVfnD05+xeoM3We3KVpREcDswXtINkm4g6KnsltSG5ZxL1Kh2Ne47pS+Lf9zAsOe+oKTnf5wrjShtDT0FnAD8ACwFjjOz4akOzDn3S/3bNOTKw7rw1pc/8OhHsTzP6SqpqFU8s4BVBdNLam1m36YsKudcUmft1Y68b1Zx8xuz6Nu6PrltG8YdkqsEonRVeRHB2cDbwKvAa+Ff51yaSeKWE3vRskENLvzv5yxftynukFwlEOUawSUETU93N7NeZtbTzHqlOjDnXHJ1q1fh/lP6sWr9Zi7872fef4HbYVESwULA71lzrhzp3rweNx3XkwnzV3LjmFlxh+MquCjXCOYDH0h6DfjfeaiZ3ZGyqJxzJTquX0umfbeaxz/+mp4t63Js35Zxh+QqqCiJ4NvwVTV8OefKiasP78qXi9dw5QvT6LRTHXq0qBd3SK4CKrE/gvLG+yNw7peWr9vE0feMQxKvXLQXDWv58Zr7tR3qj0DS+5LeK/wq+zCdc9ujce1qPHhqf5at28RFz/jFY1d6US4W/xEYFr6uBaYAfkjuXDnSq2V9/nFMDz6eu4Jb3pwddziuginxGoGZTS406GNJY1MUj3NuO52Y24rp363m4Q/n0715XQb1aRF3SK6CKDERhI3MFcgC+gM7pywi59x2u+bIbsxaspZhz0+ldcOa9G3doOSZXMaLUjU0maAqaDLwCXA5cFYqg3LObZ8q2Vk88Lv+7Fy3OucOn8ziHzfEHZKrAIpMBJJODP890Mzam1k7M+tkZgeb2bg0xeecK6WGtary2Om5bNycz9lP5rF+s3dz6YpX3BnBVeHf59MRiHOu7HRqWod7Tu7LrCVruOzZKWzbVrFuE3fpVVwiWCHpfaCdpNGFX+kK0Dm3ffbrvBPXHtmNN2f8wO1v+51ErmjFXSw+AugHDCfonMY5V8GcsWdb5ixdx33vz6PjTrW9GQqXVJGJwMw2AxMk7Wlmy9IYk3OujEji+qO7883yn/jT89No3bAm/dt4Hwbul6L0ULbdSUDSoZJmS5or6cok44dJmhK+pkvKL3S7qnNuB1XJzuL+U/rRokENznlqMgtW/BR3SK6ciXL76HaRlA3cBxwGdAOGSOqWOI2Z3WpmfcysD8HF6bFmtjJVMTmXqerXrMrjZ+yKmXHGvyex8qfNcYfkypGUJQJgADDXzOaH1UwjgEHFTD8EeCaF8TiX0do1rsWjp+/K4h83cPaTk9i4JT/ukFw5EeXJ4ruTDF4N5JnZy8XM2oKgU5sCi4DdilhHTeBQ4MIixp8LnAvQunXrkkJ2zhWhf5sG3DW4D+c//RmXjpjCfaf0IztLcYflYhbljKA60AeYE756AQ2BsyTdWcx8yUpXUTczHwV8XFS1kJk9bGa5ZpbbpEmTCCE754pyaI9mXHtEN96YsYR/vDYz7nBcORClY5qOwAFmthVA0gPAW8BvgGnFzLcIaJXwviWwuIhpB+PVQs6lze/3aseiVRt4/OOvadGgBmft1S7ukFyMopwRtABqJbyvBTQ3s3wSuq5MYhLQSVI7SVUJdva/ehBNUj1gX6C4aibnXBn78xFdObT7zvz9tS95fdr3cYfjYhQlEdwCTJH0b0lPAJ8Dt0mqBbxT1EzhGcSFwJvATGCkmc2QNFTS0IRJjwXeMjO/p825NMrOEncO7kPfVvW55NkpTJi/Iu6QXEwidVUpqRnBXUACJppZUVU8KeddVTpXtlb+tJkTHxzP0jWbeObc3b3f40pqh7qqTJhuGbAS6Chpn7IKzjkXr4a1qjL8rN2oUz2HM/49kW+W+8l5ponSZ/E/gY+BP/Nzl5V/THFczrk0al6/Bk+dtRv524xTH/+UpWs2xh2SS6MoZwTHAJ3N7AgzOyp8HZ3iuJxzadZxp9o8ceYAVqzbzGmPT2T1+i1xh+TSJEoimA9USXUgzrn49W5Vn4dPzWX+sp8468lJbNjsTx9ngiiJYD3BXUMPSbq74JXqwJxz8dirU2PuHNyHyd+u4oL/fsaW/G1xh+RSLEoiGA3cAIwn6Le44OWcq6QO79mMvx/Tg/dmLeXSZ6eQ7z2cVWolPllsZk+mIxDnXPlyym5t+GnTVm4cM4tqOVncdkJvsrxdokqpyEQgaaSZ/VbSNJK0EWRmvVIamXMudufu04GNW7Zxx9tfUb1KNv84pgeSJ4PKprgzgkvCv0emIxDnXPl00QEd2bAlnwc+mEf1nGyuPbKrJ4NKpriuKr8P/y6QtDPBk8UGTDKzJWmKzzkXM0lccUhnNm7J5/GPv6ZG1SyGHdIl7rBcGYryQNnZwETgOOAEgn6Mf5/qwJxz5YckrjuyG0MGtOa+9+dx73tz4g7JlaEozVAPA/qa2QoASY0I7iB6PJWBOefKF0n845gebNqSz21vfUVOdhZD9+0Qd1iuDERJBIuAtQnv1/LLnseccxkiK0vcckIvtmwzbn59FvnbjAv27xh3WG4HFXfX0P+F/34HfCrpZYJrBIMIqoqccxkoJzuLf/22N1mCW9+cjZlx4QGd4g7L7YDizgjqhH/nha8C3oGMcxkuJzuLO37bhyyJ2976im0GFx/oyaCiKu6uoevTGYhzrmLJzhK3ndgbCe54+yu2mXHpQbvEHZbbDsVVDd1pZpdKeoXkD5R5C6TOZbjsLHHrCb3JkrjznTlsM7jsoE7+nEEFU1zV0PDw723pCMQ5VzFlZ4lbju9FluDud+ewNX8bww7p7MmgAimuamiypGzgHDP7XRpjcs5VMFlZ4ubjepGdlcX9H8xj/eZ8rjuym7dNVEEUe/uomeVLaiKpqpltTldQzrmKJytL3HhsD2pXy+aRj75m3aat3HxcT3Kyo/aI6+IS5TmCb4CPJY0G/teZqZndkaqgnHMVkySuPrwrtatV4V/vfMX6zVu586S+VM3xZFCeRUkEi8NXFj/fUuqcc0lJ4pKDOlGrWjZ/f20m6zfn8eDv+lO9SnbcobkiROmPwG8jdc6V2tl7t6dWtRyufnEapz8+kUdPz6VOde/1tjyK0ujc25LqJ7xvIOnNlEblnKsUhgxozV2D+zJ5wSpOefRTVqzbFHdILokoFXdNzOzHgjdmtgrYKWUROecqlaN7N+ehU/vz1Q9rOeHBT1i4cn3cIblCoiSCfEmtC95IakOSB8ycc64oB3ZtytNn78bKnzZz3APj+XLxmrhDcgmiJII/A+MkDZc0HPgQuCq1YTnnKpv+bRry/NA9yMkSJz30CZ/MWxF3SC5UYiIwszeAfsCzwEigv5n5NQLnXKl1alqHF87fk53rVef0xycyZtr3cYfkiHaxeCCwwcxeBeoBV4fVQyWSdKik2ZLmSrqyiGn2kzRF0gxJY0sVvXOuwmlevwbPDd2Dni3rccF/P2P4J9/EHVLGi1I19ACwXlJvgt7KFgBPlTRT2DzFfcBhQDdgiKRuhaapD9wPHG1m3YETSxW9c65Cql+zKv85azcO6LwT1748g5ten8m2bX7pMS5REsFWMyvokOZuM7uLaA+WDQDmmtn8sHmKEeEyEp0MjDKzbwHMbGn00J1zFVmNqtk8dGp/frd7ax4aO5+LnvmcjVvy4w4rI0VJBGslXQWcCrwWHulHeSqkBb/s0nJROCzRLkADSR9ImizptGQLknSupDxJecuWLYuwaudcRZCTncUNg3rw58O7Mmb695z8yAR/1iAGURLBScAm4PdmtoRgZ35rhPmSNTtY+NwvB+gPHAEcAlwr6Vc9W5jZw2aWa2a5TZo0ibBq51xFIYlz9mnP/Sf3Y8biNRx7/3jmLVsXd1gZJcpdQ0uAF4Bq4aDlwIsRlr0IaJXwviVBm0WFp3nDzH4ys+UEt6b2jrBs51wlc1jPZjxz7u78tGkrx90/nk/n++2l6RLlrqFzgOeBh8JBLYCXIix7EtBJUjtJVYHBwOhC07wM7C0pR1JNYDdgZsTYnXOVTL/WDXjxDwNpXLsqpz42kefyFpY8k9thUaqGLgAGAmsAzGwOEZqYMLOtwIXAmwQ795FmNkPSUElDw2lmAm8AU4GJwKNmNn17PohzrnJo3agmo84fyK7tGjDs+ancOGYm+X5HUUopuCGomAmkT81sN0mfm1lfSTnAZ2bWKz0h/lJubq7l5eXFsWrnXBptyd/GDa9+yVOfLGD/zk24e0hfb710B0iabGa5ycZFOSMYK+lqoIak3wDPAa+UZYDOOVdYlews/jaoB/84tgcfzVnOsfePZ8GKn0qe0ZValERwJbAMmAacB4wBrkllUM45V+CU3dow/KzdWL5uE4Pu+5jx85bHHVKlE+WuoW0EF4f/YGYnmNkjVlJ9knPOlaE9OjTi5QsG0qR2NU57bCJPjv8G3w2VnSITgQJ/lbQcmAXMlrRM0nXpC8855wJtGtVi1B/2ZL/OTfjL6Blc/twX/iRyGSnujOBSgruFdjWzRmbWkOD2zoGSLktHcM45l6hO9So8fGoulx20Cy9+/h3HPzDeO7opA8UlgtOAIWb2dcEAM5sP/C4c55xzaZeVJS45qBOPnZ7LtyvXc9S94/hojjc9syOKSwRVwqd9f8HMlhGtrSHnnEuZA7o05ZUL96JpnaBvg/s/mOvXDbZTcYlg83aOc865tGjbOLhucHjPZtzyxmyG/mcyqzdsiTusCqe4RNBb0pokr7VAz3QF6JxzxalVLYd7hvTlmiO68u7MpRx1zzimf7c67rAqlCITgZllm1ndJK86ZuZVQ865ckMSZ+/dnmfP250t+ds47v7x/GfCAq8qiijKA2XOOVch9G/TkNcu3ps9OjTimpemc8mIKazbtDXusMo9TwTOuUqlYa2q/PuMXRl2SGdenbqYo+8Zx6wla+IOq1zzROCcq3SyssQF+3fk6bN3Z+2mrQy692OGe1VRkTwROOcqrT06NGLMxXuze/tGXPvSdM4bPpkf1/tNj4V5InDOVWpN6lTj32fsyjVHdOX92Us57K6PvPezQjwROOcqvays4K6iUecPpFpOFkMemcAdb3/F1vxtcYdWLngicM5ljJ4t6/HqxXtzbN+W3P3uHAY/PMHbKsITgXMuw9SulsPtv+3NXYP7MHvJWg6980NG5i3M6AvJngiccxlpUJ8WvH7p3vRoUY8rnp/K0P9MZsW6TXGHFQtPBM65jNWyQU2eOWd3/nx4V96ftYxD7vyI92b9EHdYaeeJwDmX0bKyxDn7tGf0RQNpXLsqv38ij6tGTeOnDHoi2ROBc84BXXauy8sXDuS8fdozYtK3HHLnhxnTP7InAuecC1XLyeaqw7sy8rw9yMkSJz/yKde+NL3Snx14InDOuUJ2bduQ1y/Zh98PbMd/Pl3AoXd9yCfzKu9DaJ4InHMuiRpVs7nuqG48e+4eZEsMeWQCf3m5cp4deCJwzrliDGgXnB2cObAtT01YwMH/+pCxX1WuPpI9ETjnXAlqVM3mL0d1Z+R5e1CtShanPz6R/3t2Cit/qhwN2HkicM65iHZt25AxF+/NRQd0ZPQXiznojrG8POW7Cv9UckoTgaRDJc2WNFfSlUnG7ydptaQp4eu6VMbjnHM7qnqVbC4/uDOvXrwXrRvW5JIRUzjziUksWlVx2yxKWSKQlA3cBxwGdAOGSOqWZNKPzKxP+PpbquJxzrmy1GXnurxw/p5cd2Q3Jn69kt/c8SEPjZ3HlgrYomkqzwgGAHPNbL6ZbQZGAINSuD7nnEur7Czx+73a8dZl+zCwY2Nuen0WR949jrxvVsYdWqmkMhG0ABYmvF8UDitsD0lfSHpdUvdkC5J0rqQ8SXnLllWuq/XOuYqvZYOaPHp6Lg+f2p+1G7dwwoOfcOULU1lVQS4mpzIRKMmwwldUPgPamFlv4B7gpWQLMrOHzSzXzHKbNGlStlE651wZObj7zrz9f/ty3j7teW7yIg68Yywj8xaybVv5vpicykSwCGiV8L4lsDhxAjNbY2brwv/HAFUkNU5hTM45l1K1quVw1eFdee3ivWjfuBZXPD+V4x8cz7RFq+MOrUipTASTgE6S2kmqCgwGRidOIGlnSQr/HxDGU3mf43bOZYwuO9dl5Hl7cPuJvVm4cgNH3zeOq0ZNK5fPHuSkasFmtlXShcCbQDbwuJnNkDQ0HP8gcAJwvqStwAZgsFX0G3Kdcy6UlSWO79+S33Rvyl3vzOGJ8d8wZtr3/PHgXTh5tzZkZyWrQU8/VbT9bm5uruXl5cUdhnPOldpXP6zlr6NnMH7eCro1q8t1R3Vj9/aN0rJuSZPNLDfZOH+y2Dnn0mSXpnV4+uzduO/kfqzesIXBD09g6PDJfLsi3ofRPBE451waSeKIXs149/J9ufw3u/DhnGUcdMdYbnp9Jms3boklJk8EzjkXg+pVsrnowE68/8f9OLpPcx4aO5/9b/uAZyZ+S36abzf1ROCcczFqWrc6t53Ym9EXDqRd41pcNWoah931Ie/PWpq2xuw8ETjnXDnQq2V9Rp63B/ef0o/NW7dx5hOTOPmRT9Py/IEnAuecKyckcXjPZrx12b5cf3R3Zv+wlqPuHcclIz5n4crUXVD2ROCcc+VM1ZwsTt+zLR8M248L9u/AG9OXcODtY3n0o/kpWZ8nAuecK6fqVq/CsEO68MGw/RjUpzmtGtZMyXpS9mSxc865stGsXg1uPbF3ypbvZwTOOZfhPBE451yG80TgnHMZzhOBc85lOE8EzjmX4TwROOdchvNE4JxzGc4TgXPOZbgK10OZpGXAgu2cvTGwvAzDKSvlNS4ov7F5XKXjcZVOZYyrjZk1STaiwiWCHSEpr6iu2uJUXuOC8hubx1U6HlfpZFpcXjXknHMZzhOBc85luExLBA/HHUARymtcUH5j87hKx+MqnYyKK6OuETjnnPu1TDsjcM45V4gnAuecy3CVJhFIOlTSbElzJV2ZZLwk3R2OnyqpX9R5UxzXKWE8UyWNl9Q7Ydw3kqZJmiIpL81x7SdpdbjuKZKuizpviuMalhDTdEn5khqG41K5vR6XtFTS9CLGx1W+SoorrvJVUlxxla+S4kp7+ZLUStL7kmZKmiHpkiTTpLZ8mVmFfwHZwDygPVAV+ALoVmiaw4HXAQG7A59GnTfFce0JNAj/P6wgrvD9N0DjmLbXfsCr2zNvKuMqNP1RwHup3l7hsvcB+gHTixif9vIVMa60l6+IcaW9fEWJK47yBTQD+oX/1wG+Svf+q7KcEQwA5prZfDPbDIwABhWaZhDwlAUmAPUlNYs4b8riMrPxZrYqfDsBaFlG696huFI0b1kvewjwTBmtu1hm9iGwsphJ4ihfJcYVU/mKsr2KEuv2KiQt5cvMvjezz8L/1wIzgRaFJktp+aosiaAFsDDh/SJ+vSGLmibKvKmMK9FZBFm/gAFvSZos6dwyiqk0ce0h6QtJr0vqXsp5UxkXkmoChwIvJAxO1faKIo7yVVrpKl9Rpbt8RRZX+ZLUFugLfFpoVErLV2XpvF5JhhW+L7aoaaLMu70iL1vS/gQ/1L0SBg80s8WSdgLeljQrPKJJR1yfEbRNsk7S4cBLQKeI86YyrgJHAR+bWeLRXaq2VxRxlK/I0ly+ooijfJVG2suXpNoEiedSM1tTeHSSWcqsfFWWM4JFQKuE9y2BxRGniTJvKuNCUi/gUWCQma0oGG5mi8O/S4EXCU4D0xKXma0xs3Xh/2OAKpIaR5k3lXElGEyh0/YUbq8o4ihfkcRQvkoUU/kqjbSWL0lVCJLA02Y2KskkqS1fZX3hI44XwZnNfKAdP18w6V5omiP45cWWiVHnTXFcrYG5wJ6FhtcC6iT8Px44NI1x7czPDxwOAL4Nt12s2yucrh5BPW+tdGyvhHW0peiLn2kvXxHjSnv5ihhX2stXlLjiKF/h534KuLOYaVJavipF1ZCZbZV0IfAmwVX0x81shqSh4fgHgTEEV97nAuuBM4ubN41xXQc0Au6XBLDVgtYFmwIvhsNygP+a2RtpjOsE4HxJW4ENwGALSl7c2wvgWOAtM/spYfaUbS8ASc8Q3OnSWNIi4C9AlYS40l6+IsaV9vIVMa60l6+IcUH6y9dA4FRgmqQp4bCrCZJ4WsqXNzHhnHMZrrJcI3DOObedPBE451yG80TgnHMZzhOBc85lOE8EzjmX4TwRuEpL0rGSTFKXMlzmfpJeDf8/uqC1R0nHSOq2Hcv7QFKpOiOXlCNpuaSbSrs+55LxROAqsyHAOIKnRMucmY02s5vDt8cApU4E2+lgYDbwW4U3tju3IzwRuEopbLdlIEH7OoMThu8naaykkZK+knSzgjb7J4ZtzXcIp3tC0oOSPgqnOzLJOs6QdK+kPYGjgVvDtuo7JB7pS2os6Zvw/xqSRoRtyj8L1EhY3sGSPpH0maTnws+QzBDgLoKncXcvg83lMpwnAldZHQO8YWZfASsTO/IAegOXAD0JnujcxcwGELTHc1HCdG2BfQke739QUvVkKzKz8cBoYJiZ9TGzecXEdT6w3sx6Af8A+kOQLIBrgIPMrB+QB/xf4Zkl1QAOBF4laAtnSDHrci4STwSushpC0DY74d/EHeYkC9qA30TQqcdb4fBpBDv/AiPNbJuZzSFoz6UsrjXsA/wHwMymAlPD4bsTVC19HDYzcDrQJsn8RwLvm9l6gkbKjpWUXQZxuQxWKdoaci6RpEbAAUAPSUbQBotJuiKcZFPC5NsS3m/jl7+Jwu2vlKY9lq38fKBV+Ewi2XIEvG1mJR3hDwEGFlQ1EbQjtD/wTilic+4X/IzAVUYnEPTm1MbM2ppZK+BrftkWfxQnSsoKrxu0J7hAW5S1BN0MFviGsNonjKfAh8ApAJJ6AL3C4RMIdvAdw3E1Je2SuAJJdcPP0Dr8XG2BC/DqIbeDPBG4ymgIQXvxiV4ATi7lcmYDYwma/x1qZhuLmXYEMEzS52HiuI2gdc3xQOOE6R4AakuaClwBTAQws2XAGcAz4bgJ/Loq6jiCPnQTz2heBo6WVK2Un825//HWR51LQtITBJ2rPx93LM6lmp8ROOdchvMzAuecy3B+RuCccxnOE4FzzmU4TwTOOZfhPBE451yG80TgnHMZ7v8B96hCajFISCMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "amp_range = np.linspace(0, 2, 50)\n", + "plt.plot(amp_range, ct.describing_function(saturation, amp_range))\n", + "plt.xlabel(\"Amplitude A\")\n", + "plt.ylabel(\"Describing function, N(A)\")\n", + "plt.title(\"Describing function for a saturation nonlinearity\");" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Backlash nonlinearity\n", + "A friction-dominated backlash nonlinearity can be obtained using the `ct.friction_backlash_nonlinearity` function. This function takes as is argument the size of the backlash region." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEWCAYAAAB42tAoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABCOElEQVR4nO3dd3gVddbA8e+hhF6kSi8C0mvorhVdRF3WLhYgoQquvbd11bWtvYtoQkdQUF/bir2BJKF3Qg81tAAhpJ73jxnca0gmN+Xm3iTn8zx5MvU3J3Mn90w9I6qKMcYYk5tywQ7AGGNMaLNEYYwxxpMlCmOMMZ4sURhjjPFkicIYY4wnSxTGGGM8WaIwxiWOKBE5JCKLg7D8H0RkdBG32VJEVEQq5GdcPpexVUQGFaaNouAbh4g8KCKTgxTH2yLySDCWHSiWKAKkuP55ROQxEZmew/AwEdkvItUL2X6R/h2h8qWSi7OAC4Gmqton2MGYglPVp1S1SJNuPpY9XlWfABCRc0UkIRhxFCVLFKXX2cAyVT0W7EBKkBbAVlVNzu+Mhd0rN6WDiJQPdgyBYImiGIjISBH5RUSed09rbBGRi33G/yAiT4vIYhFJEpFPRKSOO+6UPZKTe+UiMhh4ELhWRI6JyHKfyYYAX7jTNxaRT0XkoIjEi8gYn7aiReRJn/4/lici04DmwP+57d/rc7pirIjsEpHdInJXQdvLYV2dKyIJ7rL2ue3/XUSGiMgG92940Gf6PiKyUEQOu9O+LiJhPuNVRG4Vkc3uEdZ/ROSU7V5ERgGTgf5ubP9yh49x19lBdx02ztb2RBHZCGzM3qY7zVwR2eN+rj+JSKecpvNxRk7bQV5tiUgVEXlBRLa5438RkSo5xHOlu/10zmFchIisFZGj7voa5zOunoh85q7ngyLyc7b12F1EVrjL/kBEKueyPvL6X/DaVh8TkTkiMtWNcbWIhOeynD+OtH222REist3dDh7ymbaciNwvIptE5IC7DH/Xe7SIvCUiX4hIMnCeO+xJEakGfAk0drepY+7fd1xE6vq00UtEEkWkYk5/S0hQVfsJwA+wFRjkdo8E0oExQHngZmAXIO74H4CdQGegGvARMN0ddy6Q4NH2YyenzTbNOuBMt/tH4E2gMtAdSAQucMdFA0/6zPen5fkuy+1vCSgwy421i9veoIK0l0Pc5wIZwKNARXedJQIzgRpAJ+AE0NqdvhfQD6jgxrYWuN2nPQW+B+rgJKkNwOhclj0S+MWn/3xgP9ATqAS8BvyUre0FbttVcmkz0o27EvAyzlFebn97rttBXm0Bb7jzN8HZxga40538vCoAEUA80CbbZ1nB7b8EOAMQ4BzgONDTHfc08Lb7mVQE/sL/tt+twGKgsbsu1gLjPdax1/+C17b6mPvZD3HnfRpYlNf/hc/f+S5QBegGpAId3PG3A4uApu46eweY5ed6jwaSgIE4O96V8fkfIOf/3y+Am336XwJeC/Z3luf3WbADKK0/nJoo4n3GVXU33NPd/h+AZ3zGdwTS3H+GnDa0HP8hfMa3Bja53c2ATKCGz/ingWi3+4+N2u3/0/LIPVG09xn2HPBeQdrLYb2dC6QA5d3+Gu7y+vpMEwf8PZf5bwfm+/QrMNinfwLwbS7zjuTPieI94Dmf/uo4X3Itfdo+Px/bRG13nlq5jM91O/BqC+cLKgXolsN0Jz+vu4E1ONdfso+rkEs8HwO3ud2PA5/gJpkctscbs20Pb3us4xz/F8h7W30M+Cbb+knJ6//C5+/0/dsXA9e53Wtxk5Hb38j9nE9ZL9k/Q5ztfWq2aaLxThTXAr+63eWBPUAff7ejYPzYqafis+dkh6oedzt9LzTv8OnehrPXVq+Ay7oE97QTzl7eQVU9mq39JgVs+6Ts8TbObcICOKCqmW53ivt7r8/4FNx1JyLt3FMie0TkCPAUp663gsba2J0eAHWu9xzgz+tuR/aZThKR8iLyjHtK4wjOFxk5xOcVa0WgXh5t1cPZk93k0e49wBuqmuuFVRG5WEQWuad9DuPsuZ+M9T84RyNfu6el7s82+x6f7uP8edvOLrf/BX+21ezLqSz+Xx/KLcYWwHz3tNphnMSRCTT08zPMdRvIxSdARxFpjXPzRJKqFvtddvlhiSJ0NPPpbo6zR7MfSMbZ6wL+uFhW32fanMr/DgE+d7t3AXVEpEa29ne63X9qH2fPzldu5YWzx7urkO0V1Fs4p9naqmpNnGs2km2a3GLNyy6cLxEA3HPOdfnfugPvv+d6YCgwCGfPv+XJpjzmyW078GprP84pmTM82r0IeFhErsxppIhUwjnV9TzQUFVr4+xsCICqHlXVu1S1NXAZcKeIXOCxvILIa1sNlB3Axapa2+ensqruxL/P0GsbOGWcqp4A5gA3ADcB0wr/JwSWJYrQcaOIdBSRqjiH+R+6e9UbcPaaLnEvdj2Mc670pL1Ay5MXFt0LmH1wTmOgqjuA34CnRaSyiHQFRgEz3PmXAUNEpI6InI5z6sbXXpxTWdk9IiJV3Qt7EcAHhWyvoGoAR4BjItIe55x3dveIyGki0gy4zSfWvMwEIkSku/tF+hTwu6puzUdsqThHIVXd+fOS23aQa1uqmgW8D7zoXiwtLyL93ZhPWg0MBt4Qkb/lsNwwnO0qEchwLzBfdHKkiFwqIm1ERHDWd6b7U2T82FYD5W3g3yLSAkBE6ovIUHdcQT5DX3uBuiJSK9vwqTin4f4GnHJ7e6ixRBE6puGc29yDcxrhVgBVTcI5rz4ZZ88qGfA9fTDX/X1ARJYAFwAL3b2Wk4bh7AntAuYD/1TVBT7LXY5zSP01p36JPo2zJ3pYRO72Gf4jzqmIb4HnVfXrQrZXUHfj7PUdxblYmVMS+ATnusYynCOt9/xpWFW/BR7B2dPejbPHfl0+YpuKc+pkJ871gUV+zJPjduBHW3cDK4EY4CDwLNn+v1V1OXAp8K7vnUbuuKPusuYAh3DW6ac+k7QFvgGOAQuBN1X1Bz/+nvzy2lYD5RWcv/VrETmKs277uuMK8hn+QVXX4dz4sdnd5hu7w38FsoAl+djxCJqTdxqYIBKRH3AuvBX6SVIReRNYpapvFjqwnNtvCWwBKqpqRiCWUZRERHFOS8UHOxZjfInId8DMovi/DzR7SKj0WQb8X7CDMMbkTkR649x2PTSvaUOBJYpSRlUnBTsGY0zuRGQK8HecW4+P5jF5SLBTT8YYYzzZxWxjjDGegnrqSZxaRa/gPJ04WVWfyTa+Fs6tY81xYn1eVaPyardevXrasmXLog/YGGNKqbi4uP2qWj+ncUFLFO6DY2/gPJmYAMSIyKequsZnsonAGlW9TETqA+tFZIaqpnm13bJlS2JjYwMWuzHGlDYisi23ccE89dQHp+bLZveLfzan3gGgQA33IZ/qOPeHh/wtmcYYU5oEM1E04c81UhI4tf7Q60AHnIdvVuLcJZBVPOEZY4yB4CaKnOrdZL8F6684zwU0xik5/LqI1MyxMef9CLEiEpuYmFiUcRpjTJkWzESRwJ8LoDXl1GJtEcA8dcTjPBHcPqfGVHWSqoaranj9+jlejzHGGFMAwUwUMUBbEWklzhvJruPPtWUAtuPULkJEGgJnApuLNUpjjCnjgnbXk6pmiMgtwH9xbo99X1VXi8h4d/zbwBNAtIisxDlVdZ+q7g9WzMYYUxYF9TkKVf2C/71g5+Swt326d+FT6tgYY0zxs1pPxpgSJStL+XrNXtbsSgp2KCHlQHIa57Srz0Wdsr8rrPAsURhjSgRVJ0G8tGAD6/Y4tfTE612BZcjJkn2rdiZZojDGlD2qyvfr9/Higg2s2nmEVvWq8fK13bmsW2PKlyvbmUJVeffnzTz95Tp6NKvNu8PDA7IcSxTGmJCkqvy8cT8vLtjAsh2HaVanCv+5qiuX92hChfJWzzQjM4vH/m810xdt55IujXjhmm5Urlg+IMuyRGGMCTm/xTsJInbbIZrUrsIzV3Thyl5NqWgJAoDk1AxumbmE79cnMu6c1tz31/aUC+DRlSUKY0zIWLzlIC8uWM+izQc5vWZlnvh7Z64Jb0qlCoHZUy6J9h45QWR0DOv2HOXfl3fmhr4tAr5MSxTGmKCL23aIlxZs4Jf4/dSvUYl/XtaRYX2aB+xUSkm1bs8RIqJiOJKSzuQR4Zx3ZoNiWa4lCmNM0CzfcZiXvtnAD+sTqVstjIcv6cANfVtQJcwSRHY/bUhkwowlVKtUnjnj+9Opca1iW7YlCmNMsVu1M4mXv9nAN2v3UbtqRe4b3J7h/VtQrZJ9JeVk9uLtPPTxKto2qE5URG8a1apSrMu3T8UYU2zSMrJ49JNVzI7ZQc3KFbjrwnaMHNiSGpUrBju0kJSVpbywYD1vfL+Js9vV543rewRlXVmiMMYUi6Tj6YybHsuizQcZe3ZrJp7XhlpVLEHk5kR6Jvd+uIJPl+9iWJ/mPD60U9Du+rJEYYwJuB0HjzMyajHbDx7npWu7cXmPpsEOKaQdSk5j7LRYYrYe4v6L2zPu7NZIEB9Dt0RhjAmoZTsOM3pKDOmZyrRRfenXum6wQwppW/cnExEdw87DKbx+fQ8u7do42CFZojDGBM5Xq/Zw+wdLqV+jErNH9qFNg+rBDimkxW07yJipcagqs8b0pVeLOsEOCbBEYYwJAFXl/V+38uTna+jWtDaTR4RTr3qlYIcV0j5fsZs75iyjSe0qRI3sTct61YId0h8sURhjilRmlvL4/61mysJt/LVTQ16+toc9F+FBVXnnp8088+U6wlucxrvDwzmtWliww/oTSxTGmCJzPC2DW2ct5Zu1+xh9ViseGNKhzFd49ZKRmcWjn65m5u/buaxbY/5zVdeQfBrdEoUxpkjsO3KCUVNiWb0riceHdmJ4/5bBDimkHUvNYOKMJfy4IZEJ557B3RedGdDCfoUR1EQhIoOBV3DemT1ZVZ/JYZpzgZeBisB+VT2nGEM0xvhhw96jRETFcDA5jXeHh3NBh4bBDimk7U5KITI6lg17j/L0FV0Y1qd5sEPyFLREISLlgTeAC4EEIEZEPlXVNT7T1AbeBAar6nYRKZ4KWMYYv/2ycT83T4+jSlh55o7vT+cmxVeDqCRas+sIkdExHEvN4P2RvTmnXf1gh5SnYBZ37wPEq+pmVU0DZgNDs01zPTBPVbcDqOq+Yo7RGONhTuwORkYtpnHtKsyfONCSRB6+X7+Pq9/+DYA54/qXiCQBwU0UTYAdPv0J7jBf7YDTROQHEYkTkeG5NSYiY0UkVkRiExMTAxCuMeYkVeWFr9dz74cr6Ne6LnNv7k+T2sVbqK6kmfn7dkZPiaVF3Wp8PHEgHRvXDHZIfgvmNYqcrtpotv4KQC/gAqAKsFBEFqnqhlNmVJ0ETAIIDw/P3o4xpoikZmRy34cr+HjZLq4Nb8aTl3e2N895yMpSnv3vOt75cTPnnlmf16/vSfUSViU3mNEmAM18+psCu3KYZr+qJgPJIvIT0A04JVEYYwLv8PE0xk6LY/GWg9zz1zOZcO4ZQa1BFOpOpGdy15zlfL5yNzf0bc6//tapRL7vO5iJIgZoKyKtgJ3AdTjXJHx9ArwuIhWAMKAv8FKxRmmMAWD7geOMjF5MwsEUXrmuO0O7Zz9TbHwdTE5jzNRY4rYd4oGL2zM2yIX9CiNoiUJVM0TkFuC/OLfHvq+qq0VkvDv+bVVdKyJfASuALJxbaFcFK2Zjyqol2w8xZkosmapMH92XPq1CowZRqNqyP5mIqMXsTjrBmzf0ZEiXRsEOqVBEtfSdzg8PD9fY2Nhgh2FMqfDlyt3c/sEyGtasTFREb86ob4X9vMRsPciYqbGUE+Hd4eH0anFasEPyi4jEqWp4TuNK1hUVY0yxUVUm/7yFp75cS/dmtZk8PJy6VtjP06fLd3H3nOU0Pa0KURG9aVE3dAr7FYYlCmPMKTIys/jX/61h2qJtDOlyOi9e0z0kaxCFClXlzR828Z//rqd3y9OYdFPoFfYrDEsUxpg/SU7N4B+zlvLdun2MO7s19w1uH7I1iEJBemYWj3zsvAf8b90a81yIFvYrDEsUxpg/7D1ygsjoGNbuPsKTf+/Mjf1aBDukkHb0RDoTZizh5437ueW8Ntx5YbtSmVQtURhjAFi35wiRUTEcTknnvRG9Oa+9lVbzsutwCpHRMWzcd4xnr+zCtb1Du7BfYViiMMbw04ZEJsxYQrVK5Zkzzgr75WXVziRGTYnheGom0RG9+UvbklGzqaAsURhTxn0Qs50H56+ibYPqREX0plEtq9nk5ft1+5g4cwm1q1Rk7s39aX96yanZVFCWKIwpo7KylBcWrOeN7zdxdrv6vHF9D2pUrhjssELatEXb+Ocnq+jQqCbvj+xNw5qVgx1SsbBEYUwZlJqRyT1zV/Dp8l0M69OMx4daYT8vWVnKM1+tY9JPmzm/fQNeG9aDaiWssF9hlJ2/1BgDwKHkNMZNi2Px1oPcN7g9488puTWIisOJ9EzunLOML1bu4aZ+LfjnZR1LZGG/wrBEYUwZsu1AMiOjYth5OIXXhvXgsm6Ngx1SSDtwLJXRU2NZtuMwD1/SgVFntSqTSdUShTFlRNy2Q4yZGouqMnN0X8JbWmE/L5sSjxERFcPeIyd48/qeXFzCC/sVhiUKY8qAz1fs5o45y2hcqzJREX1oVa901CAKlMVbnMJ+FcoJs8b2o2fzklHYL1AsURhTiqkqk37azNNfriO8xWlMGh5OnVJUgygQPlm2k3vmrqBpnSpEj+xD87pVgx1S0FmiMKaUysjM4p+frmbG79u5tGsjnr+6W6mrQVSUVJU3vo/n+a830KdVHSbd1IvaVS2pgh+JQkTK4bx+tDGQAqxW1b2BDswYU3DHUjO4ZeYSflifyPhzzuDev55ZKmsQFZX0zCwemr+SObEJDO3uFParVMGS6km5JgoROQO4DxgEbAQSgcpAOxE5DrwDTFHVrOII1Bjjnz1JTmG/9XuP8vQVXRjWp/TWICoKR06kM9Et7Hfr+W2448J2ZfLOJi9eRxRPAm8B4zTba/BEpAHO+61vAqYUdOEiMhh4BedVqJNV9ZlcpusNLAKuVdUPC7o8Y0q7tbuPEBEVw9ET6bw/sjfntCvdNYgKa+fhFCKjYtiUeIznrurKNeHNgh1SSMo1UajqMI9x+4CXC7NgESkPvAFcCCQAMSLyqaquyWG6Z3HerW2MycWPGxKZOGMJ1StVYO74AXRsXPprEBXGqp1JREbHkJKWSXREH85qWy/YIYWsPB8vFJEnRKSCT39NEYkqgmX3AeJVdbOqpgGzgaE5TPcP4CNgXxEs05hSaebv24mMjqFZnap8PHGgJYk8fLt2L9e8s5CK5cvx4c0DLEnkwZ/n0CsAv4tIVxG5CIgB4opg2U2AHT79Ce6wP4hIE+By4O28GhORsSISKyKxiYmJRRCeMaEvK0t59qt1PDh/JWe1qcfc8f05vVbZKFRXUNMWbmXM1Fha16/G/AkDOPP0GsEOKeTledeTqj4gIt8CvwOHgLNVNb4Ilp3T1SLN1v8ycJ+qZuZ1cUlVJwGTAMLDw7O3Y0ypcyI9k7vnLuezFbu5vm9zHv9bpzJXgyg/srKUp75Yy+RftnBB+wa8WsYK+xWGP7fHno1zwflxoAvwuohEququQi47AfC9ctQUyN5mODDbTRL1gCEikqGqHxdy2caUaAeT0xg7NZbYbYd44OL2jD3bCvt5SUnL5I4PlvHV6j2M6N+CRy/rRHm7Xdhv/qTT54GrT15kFpErgO+A9oVcdgzQVkRaATuB63DupPqDqrY62S0i0cBnliRMWbdlfzIRUYvZlXSCN67vySVdy24NIn/sP5bKqCmxrEg4zCOXdiRyYEtLqvnkT6Lor6qZJ3tUdZ6I/FjYBatqhojcgnM3U3ngfVVdLSLj3fF5XpcwpqyJ3erUIAKYNaYvvVpYYT8v8fuOERG9mMSjqbx1Qy8Gdz492CGVSF4P3N0IzPRNEiep6gH3gbxGqvpLQReuql8AX2QblmOCUNWRBV2OMaXBZyt2ceec5TSpXYWokb1paYX9PC3afICxU2MJq1CO2WP7071Z7WCHVGJ5HVHUBZaKSBzOXU4nn8xuA5wD7AfuD3iExpRxqsrbP27m2a/W0bvlaUy6KZzTrLCfp/lLE7j3wxU0r1OV6Ig+NKtjhf0Kw+uBu1dE5HXgfGAg0BWn1tNa4CZV3V48IRpTdmVkZvHIJ6uZtXg7l3VrzH+u6mqF/TyoKq99F8+LCzbQt1UdJt0UTq2q9h7wwvK8RuGedlrg/hhjitHRE+lMnLmUnzYkMuHcM7j7Iivs5yUtI4sH56/kw7gELu/RhGeu7GKF/YqIP7fH1gfGAC19p1fVyMCFZUzZtjsphYioGDbuO8YzV3ThOivs5ykpJZ2bp8fx26YD3HpBW+4Y1NbubCpC/tz19AnwM/ANcMqFbWNM0Vq9y6lBlJyaaYX9/JBw6DgRUTFs2Z/M81d346peTYMdUqnjT6Koqqr3BTwSYwzfr9/HLTOWULNKReaO70+HRlazycuKhMOMmhLLifRMpkb2YUAbq9kUCP487/+ZiAwJeCTGlHEzft/G6CmxtKhbjfkTBlqSyMM3a/Zy7TuLCCtfjnk3D7AkEUBez1Ecxam9JMCDIpIKpLv9qqq2FRtTBLKylGf/u453ftzMeWfW57Xre1LdahB5iv51C49/tobOTWoxeUQ4DWpYIcRA8ro91koqGhNgJ9IzuWvOcj5fuZsb+jbnX1bYz1NmlvLvz9fy/q9bGNShIa8O607VMEuqgebPXU8DgWWqmuw+rd0TeNmeozCmcA4cS2XM1FiWbD/Mg0PaM+YvVtjPS0paJrfNXsrXa/YSMbAlD1/S0Qr7FRN/UvFbQDcR6QbcC7wHTMN5OtsYUwCbE48RER3DnqQTvHlDT4Z0scJ+XhKPpjJ6Sgwrdibx6KUdiTyrVd4zmSLjT6LIUFUVkaHAK6r6noiMCHRgxpRWMW5hv3IizBzTj14tTgt2SCEtft9RRkbFsP9YKu/c2IuLOllhv+LmT6I4KiIPADcCZ7vvsLZn4o0pgE+X7+LuOctpeloVoiJ606KuFfbz8tum/YyfFkdYhfJ8MLY/3aywX1D4c9XsWiAVGKWqe3BeV/qfgEZlTCmjqrzxfTy3zlpK92a1mTdhgCWJPHwUl8CI9xfToGZl5k8YYEkiiPx5Feoe4EWf/u3A1EAGZUxpkp6ZxcPzV/FB7A6Gdm/Mc1d1tRpEHlSVV7+N56VvNjDgjLq8dWMvalWxkxjB5M9dT/2A14AOQBjOS4aOqWqtAMdmTIl39EQ6E2Ys4eeN+/nH+W2488J2dmeTh7SMLO6ft4J5S3ZyZc+mPH1FF8Iq2O3CwebPNYrXcV5TOhfnHdbDgbaBDMqY0mDX4RQio2OI33eM567syjW9m+U9UxmWlJLO+GlxLNx8gDsGtePWC9pYUg0Rfj2poqrxIlLeLTseJSK/BTguY0q0VTudwn4paZlERfTmL22tsJ+XHQePExEdw7YDybx4TTeu6GmF/UKJP8d0x0UkDFgmIs+JyB1AkVyFE5HBIrJeROJF5JS35YnIDSKywv35zX2Ww5iQ9v26fVzzzkIqlBPm3tzfkkQelu84zOVv/sa+IyeYGtnXkkQI8idR3IRzXeIWIBloBlxZ2AW7t9m+AVwMdASGiUjHbJNtAc5R1a7AE8Ckwi7XmECatnAro6bE0Lp+NeZPHEj7060kmpevV+/h2kkLqVyxHPMmDKD/GXWDHZLJgT93PW1zO1OAfxXhsvsA8aq6GUBEZgNDgTU+y/Y9xbUIsF0NE5KyspRnvlrHpJ82c377Brw2rAfVrLCfp/d/2cITn6+ha9PaTB4eTv0alYIdksmFV/XYlTjVY3Pk7uUXRhNgh09/AtDXY/pRwJe5jRSRscBYgObN7W1gpvicSM/kjg+W8eWqPQzv34JHL+1ohf08ZGYpT3y2hujftvLXTg15+doeVAmz24VDmdcuz6UBXnZOtzPkmJhE5DycRHFWbo2p6iTcU1Ph4eG5JjhjitJ+t7Dfsh2HefiSDow6q5XdqePheFoGt85axjdr9zLqrFY8OKSDFfYrAbzKjG8DEJGLVfVPe/IiMh54u5DLTsC53nFSU2BX9olEpCswGbhYVQ8UcpnGFJlNiceIiIph75ETvHVDTwZ3tsJ+XvYdPcGo6FhW70riX3/rxIgBLYMdkvGTPydRHxGRVFX9DkBE7gPOpfCJIgZoKyKtgJ04z2pc7zuBiDQH5gE3qeqGQi7PmCLz++YDjJ0WR4Vywuyx/ejR3Ar7edmw9ygRUTEcTE5j0k3hDOrYMNghmXzwJ1H8Ded1qPcAg4H27rBCUdUMEbkF+C/OXVXvq+pq92gFVX0beBSoC7zpHs5nqGp4YZdtTGF8smwn98xdQdM6VYge2YfmdasGO6SQ9lv8fsZNj6NyxfLMGdefLk2tqENJI6p5n84XkQbAN0AcEKn+zBRE4eHhGhsbG+wwTCmjqrz+XTwvLNhA31Z1eOemXtSuGhbssELah3EJ3P/RClrXr8b7I3vT9DRLqqFKROJy2xH3953ZilPnqTVwlYjYO7NNmZKemcVD81cyJzaBy3s04Zkru1hhPw+qyksLNvDqd/EMbFOXN2+wwn4lmb0z25g8HDmRzoTpS/glfj+3XtCWOwa1tTubPKRmZHL/RyuZv3QnV/VqylOXW2G/ks6f6rGXA9+papLbXxs4V1U/DmxoxgTfzsMpREQtZnNiMv+5qitXh1thPy9Jx9MZOy2W37cc5K4L23HL+VbYrzTw52L2P1V1/skeVT0sIv8EPg5YVMaEgJUJSUROieFEeiZTIvswsE29YIcU0nYcPM7IqMVsP3icl67txuU9rJBCaeFPosjpmNFqE5hS7du1e7ll5lLqVAtjxui+tGtoZ2K9LN1+iDFTY0nPVKaN6ku/1lazqTTx5ws/VkRexCngp8A/cO5+MqZUmrpwK499uprOTWoxeUQ4DWpUDnZIIe2rVXu4bfZSGtSsxOyRfWjToHqwQzJFzJ9E8Q/gEeADnDugvgYmBjIoY4IhK0t56ou1TP5lC4M6NOTVYd2pGmYHz7lRVd77ZQv//mIt3ZrWZvKIcOpVt8J+pZE/1WOTgVPeFWFMaZKS5hT2+2r1HkYOaMkjl3a0GkQeMrOUx/9vNVMWbmNwp9N56druVtivFPPnrqf6wL1AJ+CPY3BVPT+AcRlTbBKPpjJ6aiwrEg7z6KUdiTyrVbBDCmnJqRncOmsp367bx5i/tOKBiztQzpJqqebPcfUMnNNOlwLjgRFAYiCDMqa4xO87RkT0YhKPpvL2jb34a6fTgx1SSNt35ASRU2JYs+sITwztxE39WwY7JFMM/EkUdVX1PRG5TVV/BH4UkR8DHZgxgbZo8wHGTo0lrEI5Phjbn27Nagc7pJC2fs9RIqNjOHQ8jXeHh3NBByvsV1b4kyjS3d+7ReQSnFLgdoO0KdHmL03g3g9X0KJuNaJG9qZZHatB5OWXjfu5eXocVcKcwn6dm1hhv7LEn0TxpIjUAu4CXgNqAncENCpjAkRVee27eF5csIH+revy9o29qFXVahB5mROzgwfnr+SM+tWJiuhN49pVgh2SKWb+3PX0mduZBJwX2HCMCZy0jCwenL+SD+MSuKJnE565oqvVIPKgqry4YAOvfRfPX9rW440belKzsiXVssifu55aA68A/YEsYCFwh6puDnBsxhSZpJR0bp4ex2+bDnD7oLbcdoEV9vOSmpHJvR+u4JNlu7iudzOe+HtnKtp7wMssf049zcR5Kvtyt/86YBbQN1BBGVOUEg4dJyIqhq0Hknnh6m5c2csusXk5fDyNsdPiWLzlIPf89UwmnHuGJdUyzp9EIao6zad/uvtmOmNC3oqEw0RGx5Ka4RT2G3CGFfbzsv3AcUZGLybhYAqvXNedod2bBDskEwJyPZYUkToiUgf4XkTuF5GWItJCRO4FPi+KhYvIYBFZLyLxInLK09/ieNUdv0JEehbFck3ZsGDNXq59ZxGVK5Zj/oQBliTysGT7IS5/81cOJqcxfXRfSxLmD15HFHH87w13AON8xinwRGEWLCLlcU5pXQgkADEi8qmqrvGZ7GKgrfvTF3gLO+Vl/BD16xYe/2wNXZvUYvKI3tSvYTWIwLlAnZaZRXqmkpaRRXpmFmkZWcRtO8R9H63g9FqViRrZm9b1rbCf+R+vN9wFuo5BHyD+5EVxEZkNDAV8E8VQYKr7ju5FIlJbRBqp6u4Ax2ZKqMws5cnP1xD161Yu6tiQV67rETI1iJ77ah1b9icXWXtZqqRn6h9f9k4CyHITgOYwzBmem57Na/Pu8HDqWmE/k00wS2M2AXb49Cdw6tFCTtM0AU5JFCIyFhgL0Lx58yIN1JQMx9MyuG32Mhas2UvkwFY8dEmHkCrst+twCpsSjxVZe4JQsYJQsXw5wsqXo3qlCoSVL+f0Vzj5W3IYVs4dJoRVKE/F8kL1ShU4r30DKlcMjaRqQkswE0VO/8HZd3f8mcYZqDoJmAQQHh6e+26TKZX2HT3B6CmxrNqZxGOXdWTkwNAr7PfydT2CHYIxBRLMRJEA+L6AuClOeZD8TmPKuI17jzIyKoaDyWm8c1M4F3a0GkTGFCW/nqARkZq+v4tIDNBWRFqJSBjO8xmfZpvmU2C4e/dTPyDJrk8YX7/F7+eKt34jNSOLD8b1syRhTAD4+6jlD9l+F5qqZgC3AP8F1gJzVHW1iIwXkfHuZF8Am4F44F1gQlEt35R8H8YlMPz9xZxeszIfTxxA16a1gx2SMaVSfk89FemVQVX9AicZ+A5726dbsdeummxUlZe/2cgr325kwBl1eevGXtSqYjWIjAkUeyGwKVHSMrK4/6MVzFu6k6t6NeWpy7tYYT9jAswShSkxko6nM256LIs2H+TOC9vxj/PbWA0iY4pBfhOF3XZqgmLHweOMjFrM9oPHeenablzewwr7GVNc/E0Uku23McVm2Y7DjJ4SQ1pGFlMj+9L/jLrBDsmYMsXfRHFttt/GFIuvVu3h9g+WUr9GJWaP7UebBjWCHZIxZY5fiUJVN/j+NibQVJX3f93Kk5+voWvT2rw3Ipx6VoPImKCwi9km5GRmKU98tobo37by104Nefna0CnsZ0xZZInChJTjaRncOmsp36zdx+izWvHAkNAq7GdMWeTPO7M7q+qq4gjGlG37jpxg1JRYVu9K4vGhnRjev2WwQzLG4N8RxdtuLaZoYKaqHg5oRKZM2rD3KBFuYb93h4dzQQer2WRMqMjzkVZVPQu4AaeKa6yIzBSRCwMemSkzfo3fz5Vv/kZaZhZzxvW3JGFMiPH3rqeNIvIwEAu8CvQQ55HYB1V1XiADNKXb3NgdPDBvJa3rVyMqog9NalcJdkjGmGz8uUbRFYgALgEWAJep6hIRaQwsBCxRmHxTVV5asIFXv4vnrDb1ePPGntSsbIX9jAlF/hxRvI5T4vtBVU05OVBVd7lHGcbkS2pGJvd/tJL5S3dyTXhT/n15FyqWt8J+xoSqPBOFqp7tMW5a0YZjSruk4+mMnRbL71sOcvdF7Zh4nhX2MybU2XMUpthsP3CckdGLSTiYwivXdWdo9ybBDskY4wdLFKZYLN1+iNFTYsnIUqaP7kufVnWCHZIxxk9BOTEsInVEZIGIbHR/n5bDNM1E5HsRWSsiq0XktmDEagrvq1W7uW7SIqpVqsC8CQMsSRhTwuQ7UYjIUyJyn4gUptbz/cC3qtoW+Nbtzy4DuEtVOwD9gIki0rEQyzTFTFWZ/PNmbp6xhI6NazJ/wgDOqF892GEZY/KpIEcUi3G+xF8qxHKHAlPc7inA37NPoKq7VXWJ230UWAvYSe0SIiMzi39+uponP1/LxZ1PZ9aYftS16q/GlEh5JgoRGejbr6ofA4tUdXghlttQVXe77e0GGuQRQ0ugB/C7xzRjRSRWRGITExMLEZoprOTUDMZNi2Pqwm2MO7s1rw/rSeWKVv3VmJLKn4vZrwE9/Rj2JyLyDXB6DqMe8i+0P9qpDnwE3K6qR3KbTlUnAZMAwsPD7ZWtQbL3yAkio2NYu/sIT/y9Mzf1axHskIwxhZRrohCR/sAAoL6I3OkzqiaQ5+6hqg7yaHuviDRS1d0i0gjYl8t0FXGSxAwrFRL61u05QmRUDIdT0nlvRG/Oa+95oGiMKSG8Tj2FAdVxkkkNn58jwFWFXO6nwAi3ewTwSfYJ3FpS7wFrVfXFQi7PBNjPGxO5+q2FZKoyZ1x/SxLGlCK5HlGo6o/AjyISrarbini5zwBzRGQUsB24GsCtHzVZVYcAA4GbgJUissyd70FV/aKIYzGFNCdmBw/OX0mbBtV5f2RvGlthP2NKFX+uUUSLyCnn/FX1/IIuVFUPABfkMHwXMMTt/gWw2g4hTFV54esNvP59PH9pW483b+hJDSvs50lVrWSJKXH8SRR3+3RXBq7EuT3WlGGpGZnc++EKPlm2i+t6N+OJv3e2wn4esrKUZ79aR9WwCtw2qG2wwzEmX/wpChiXbdCvIvJjgOIxJcCh5DTGTYtj8daD3Dv4TG4+5wzbS/ZwIj2TO+cs44uVe7ipXws7qjAljj/vo/Ctt1AO6EXOt72aMmDbgWQiomJIOJTCq8N68LdujYMdUkg7cCyVMVNjWbrjMA8N6cDov7SyJGFKHH9OPcUBinO9IAPYAowKZFAmNMVtO8SYqbFkqTJjTF96t7SaTV42Jx5jZFQMe4+c4M3re3Jxl0bBDsmYAvHn1FOr4gjEhLYvVu7mjg+WcXqtykSN7E1rq9nkafGWg4ydFkt5EWaN7UfP5qfUvTSmxPDn1FNlYAJwFs6RxS/AW6p6IsCxmRCgqrz782ae+mIdPZvX5t3h4VazKQ+fLNvJPXNX0LROFaJH9qF53arBDsmYQvHn1NNU4ChO2Q6AYcA03GcfTOmVkZnFY/+3mumLtnNJl0a8cE03q9nkQVV584dN/Oe/6+nTqg6TbupF7aphwQ7LmELzJ1GcqardfPq/F5HlgQrIhIbk1AxumbmE79cnMu7s1tw3uD3lytlF2NykZ2bx8PxVfBC7g6HdG/PcVV2pVMGSqikd/EkUS0Wkn6ouAhCRvsCvgQ3LBNOeJKew3/q9R/n35Z25oa8V9vNy5EQ6E2cs4eeN+/nH+W2488J2dmeTKVX8SRR9geEist3tbw6sFZGVgKpq14BFZ4rd2t1HiIyO4UhKOpNHhHPemVazycvOwylERsWwKfEYz13ZlWt6Nwt2SMYUOX8SxeCAR2FCwo8bEpk4YwnVK1Vg7vgBdGxcM9ghhbRVO5OIjI4hJS2T6Ig+nNW2XrBDMiYg/EkUT6rqTb4DRGRa9mGmZJu1eDsPf7yKtg2qExXRm0a1rLCfl+/W7eWWmUupXaUiH948gDNPrxHskIwJGH8SRSffHhGpgPN0tikFsrKU579ez5s/bOLsdvV54/oeVtgvD9MWbuWfn66mY+OavD+iNw1qVg52SMYElNeLix4AHgSqiMgR/lfJNQ33TXKmZDuRnsndc5fz2YrdDOvTnMeHdrLCfh6yspSnv1zLuz9v4YL2DXh1WA+qVfJnX8uYks3rfRRPA0+LyNOq+kAxxmSKwcHkNMZOjSV22yHuv7g9485ubXfqeEhJy+SOD5bx1eo9jOjfgkcv60R5u13YlBH+7A59KSJnZx+oqj8FIB5TDLbuTyYiOoadh1N4/foeXNrVCvt52X8sldFTYlmecJhHLu1I5MCWllRNmeJPorjHp7sy0AenUGCBX1xkgidu20FGT4kFYObovoRbYT9P8fuOERG9mMSjqbx1Qy8Gd7bCyabs8aco4GW+/SLSDHguYBGZgPlsxS7unLOcxrUqEx3Rh5b1qgU7pJD2++YDjJ0WR8Xywuyx/enerHawQzImKApy5TIB6FyYhYpIHRFZICIb3d+5ltYUkfIislREPivMMssyVeXtHzdxy8yldG1Si3kTBlqSyMPHS3dy03uLqVc9jPkTBlqSMGWaP9VjX8OpGgtOYukOFLbW0/3At6r6jIjc7/bfl8u0twFrAXv6qwAyMrN49NPVzPx9O5d2bcTzV1thPy+qyuvfxfPCgg30a12Hd24Mp1ZVu13YlG3+XKOI9enOAGapamFrPQ0FznW7pwA/kEOiEJGmwCXAv4E7C7nMMudYagYTZyzhxw2J3HzuGdxz0ZlW2M9DemYWD85bydy4BC7v0YRnruxihf2Mwb9E8QHQBueoYlMRvYeioaruBlDV3SKSW0Ghl4F7gTwfexWRscBYgObNmxdBiCXb7qQUIqNj2bD3KE9f0YVhfWydeElKSWfCjDh+jT/ArRe05Y5Bbe3OJmNcXg/cVQCeAiKBbTinnZqKSBTwkKqmezUsIt+Q87u1H/InMBG5FNinqnEicm5e06vqJNwHAcPDwzWPyUu1Nbucwn7HUjN4f2RvzmlXP9ghhbSEQ8eJjI5hc2Iyz1/djat6NQ12SMaEFK8jiv/g7Mm3UtWjACJSE3je/bnNq2FVHZTbOBHZKyKN3KOJRsC+HCYbCPxNRIbg3JZbU0Smq+qNnn9RGff9+n3cMmMJNatUZO74/nRoZJd2vKxMSCJySgwn0jOZEtmHgW2ssJ8x2Xnd9XQpMOZkkgBQ1SPAzcCQQi73U2CE2z0C+CT7BKr6gKo2VdWWwHXAd5YkvM38fTujp8TSom415k8YaEkiD9+s2cs17ywkrHw5Prp5gCUJY3LhlShUVU85haOqmfzvLqiCega4UEQ2Ahe6/YhIYxH5opBtlzknaxA9OH8lZ7etx5zx/Tm9lhWq8zLlt62MnRZL24bVmT9xAO0aWvVXY3LjdeppjYgMV9WpvgNF5EZgXWEWqqoHgAtyGL6LHI5WVPUHnDujTDYn0jO5a85yPl+5mxv6Nudff+tEBSvsl6vMLOWpL9by3i9bGNShIa8O607VMCvsZ4wXr/+QicA8EYnEKdmhQG+gCnB5McRm8nAwOY0xU2OJ23aIB4e0Z8xfrLCfl5S0TG7/YCn/Xb2XkQNa8silHa2wnzF+8KoeuxPoKyLn47yTQoAvVfXb4grO5G7L/mQiohazO+kEb97QkyFdGgU7pJCWeDSV0VNjWZFwmEcv7UjkWa2CHZIxJYY/tZ6+A74rhliMn2K2HmTs1FhEhJlj+tGrRa4VUAwQv+8oI6Ni2H8slXdu7MVFnaywnzH5YSdnS5j/W76Lu+Ysp+lpVYiK6E2LulazycvCTQcYNy2WsArl+GBsf7pZzSZj8s0SRQmhqrz14yae+2o9fVrW4Z2benFatbBghxXS5i1J4L6PVtCibjWiRvamWZ2qwQ7JmBLJEkUJkJ6ZxaOfrGLW4h0M7d6Y567qajWIPKgqr34bz0vfbKB/67q8fWMvK+xnTCFYoghxR0+kM3HmUn7akMjE887g7ovOtDubPKRlZPHAvJV8tCSBK3o24ZkruhJWwW4XNqYwLFGEsF2HU4iMjiF+3zGeu7Ir1/RuFuyQQlpSSjo3T4/jt00HuH1QW267wAr7GVMULFGEqNW7koiMjuF4aiZREb35S1sr7Odlx0GnsN/WA8m8cHU3rrTCfsYUGUsUIej7dfu4ZeYSalWpyNyb+9P+dKvZ5GVFwmEio2NJzXAK+w04w2o2GVOULFGEmOmLtvHoJ6vo2Lgm743oTcOaVrPJy4I1e7l11lLqVg9j9ti+tGlgNZuMKWqWKEJEVpby7FfreOenzZzfvgGvDetBtUr28XiJ+nULj3+2hq5NajF5RG/q16gU7JCMKZXsmygEnEjP5M45y/hi5R6G92/Bo5d2tMJ+HjKzlCc/X0PUr1u5qGNDXrmuB1XC7HZhYwLFEkWQHTjm1CBatuMwD1/SgVFntbI7dTwcT8vgttnLWLBmL5EDW/HQJR2ssJ8xAWaJIog2JR4jIiqGvUdO8NYNPRnc2Qr7edl39ASjp8SyamcSj13WkZEDrbCfMcXBEkWQLN5ykLHTYikvwuyx/ejR3Ar7edm41ynsdzA5jXduCufCjg2DHZIxZYYliiD4ZNlO7pm7gqZ1qhA9sg/N61oNIi+/xe9n3PQ4Klcsz5xx/enStFawQzKmTAnKFVMRqSMiC0Rko/s7x91pEaktIh+KyDoRWSsi/Ys71qKkqrz+3UZum72MHs1rM+/mAZYk8vBRXAIjohbTqFZl5k8YYEnCmCAI1q019wPfqmpb4Fu3PyevAF+panugG7C2mOIrcumZWdz30Qqe/3oDf+/emKmj+lC7qlV/zY2q8tKCDdw1dzm9W9Zh7vgBND3NkqoxwRCsU09DgXPd7ik478O+z3cCEakJnA2MBFDVNCCtuAIsSkdOpDNxxhJ+3rifW89vwx0XtrM7mzykZWRx/0crmLd0J1f1aspTl3exwn7GBFGwEkVDVd0NoKq7RaRBDtO0BhKBKBHphvPe7ttUNTmnBkVkLDAWoHnz5oGJugB2Hk4hMiqGTYnHeO6qrlwTboX9vCQdT2f89DgWbj7AXRe245bz21hSNSbIApYoROQbIKd3Tj7kZxMVgJ7AP1T1dxF5BecU1SM5Tayqk4BJAOHh4Zr/iIveqp1OYb+UNKcG0cA2VoPIy46Dx4mIjmHbgWReurYbl/ewwn7GhIKAJQpVHZTbOBHZKyKN3KOJRsC+HCZLABJU9Xe3/0Nyv5YRcr5du5d/zFrKaVXDmHZzX8483WoQeVm+4zCjpsSQnqlMG9WXfq3rBjskY4wrWCd+PwVGuN0jgE+yT6Cqe4AdInKmO+gCYE3xhFc40xZuZczUWFrXr8b8CQMsSeThv6v3cO2khVQJK89HNw+wJGFMiAnWNYpngDkiMgrYDlwNICKNgcmqOsSd7h/ADBEJAzYDEcEI1l9ZWcpTX6xl8i9bGNShAa9cZ4X98vL+L1t44vM1dGtam8kjwqlX3Qr7GRNqgvItpqoHcI4Qsg/fBQzx6V8GhBdfZAWXkpbJHR8s46vVexjRvwWPXtbJahB5yMxSnvhsDdG/bWVwp9N56druVtjPmBBlu7tFYP+xVEZPiWV5wmEeubQjkQNb2p06Ho6nZXDrrGV8s3YvY/7Sigcu7kA5S6rGhCxLFIUUv+8YEdGLSTyayls39GJw55xu9DIn7Tt6glHRsazelcTjQzsxvH/LYIdkjMmDJYpCWLT5AOOmxVGxvDB7bH+6N6sd7JBC2oa9R4lwC/u9OzycCzpYYT9jSgJLFAX08dKd3PPhcprXqUp0RB+a1bHyEl5+jd/P+OlxVKlYnrnj+9O5idVsMqaksESRT05hv3heWLCBfq3r8M6N4dSqWjHYYYW0ubE7eGDeSs6oX533I3rTpHaVYIdkjMkHSxT5kJ6ZxYPzVjI3LoErejThmSu7Wg0iDycL+736XTxntanHmzf2pGZlS6rGlDSWKPyUlJLOhBlx/Bp/gNsuaMvtg9ranU0eUjMyuf+jlcxfupNrwpvy78u7UNHeA25MiWSJwg8Jh44TGR3D5sRknr+6G1f1shpEXpKOpzN2Wiy/bznI3Re1Y+J5VtjPmJLMEkUeViQcZtSUWE6kZzI1sg8DrLCfp+0HjjMyejEJB1N45bruDO3eJNghGWMKyRKFh2/WOIX96lQLY+bovrRtaDWbvCzdfojRU2LJyFKmjepDX6vZZEypYIkiF9G/buHxz9bQuUktJo8Ip0GNysEOKaR9tWo3t81eRsOalYmK6M0Z9asHOyRjTBGxRJFNZpby78/X8v6vWxjUoSGvDutO1TBbTblRVd77ZQv//mIt3ZvVZvLwcOpaYT9jShX7BvSRkpbJbbOX8vWavUQMbMnDl3QsU4X90jKySEpJJykljcPH052flHQOH3f73eFJKen/609O52hqBhd3dgr7Va5ohf2MKW0sUfi47t1FLN9xGIBfNu5n8Ms/BTegYqA4CfLw8TSS0zJzna6cQO2qYdSuUpFaVStSr3oYbRtUp1bVirRpUJ1hvZtbYT9jSilLFD4u6tiQoynptG9Uti5aV6lYgdpVK1K7SkVqV61ILTchnFY1zO2vSPWwCpYIjCmjLFH4mHheGyae1ybYYRhjTEixR2WNMcZ4CkqiEJE6IrJARDa6v0/LZbo7RGS1iKwSkVkiYveoGmNMMQvWEcX9wLeq2hb41u3/ExFpAtwKhKtqZ6A8cF2xRmmMMSZoiWIoMMXtngL8PZfpKgBVRKQCUBXYFfjQjDHG+ApWomioqrsB3N8Nsk+gqjuB54HtwG4gSVW/LtYojTHGBC5RiMg37rWF7D9D/Zz/NJwjj1ZAY6CaiNzoMf1YEYkVkdjExMSi+SOMMcYE7vZYVR2U2zgR2SsijVR1t4g0AvblMNkgYIuqJrrzzAMGANNzWd4kYBJAeHi4FjZ+Y4wxjmCdevoUGOF2jwA+yWGa7UA/EakqzssMLgDWFlN8xhhjXKJa/DvfIlIXmAM0x0kIV6vqQRFpDExW1SHudP8CrgUygKXAaFVN9aP9RGBbAcOrB+wv4LyBZHHlj8WVPxZX/pTGuFqoav2cRgQlUYQyEYlV1fBgx5GdxZU/Flf+WFz5U9bisiezjTHGeLJEYYwxxpMlilNNCnYAubC48sfiyh+LK3/KVFx2jcIYY4wnO6IwxhjjyRKFMcYYT2UuUYjI1W7p8iwRyfU2MhEZLCLrRSReRO73Ge5XifQCxpZn2yJypogs8/k5IiK3u+MeE5GdPuOGFFdc7nRbRWSlu+zY/M4fiLhEpJmIfC8ia93P/TafcUW2vnLbXnzGi4i86o5fISI9/Z23MPyI6wY3nhUi8puIdPMZl+PnWYyxnSsiST6fz6P+zhvguO7xiWmViGSKSB13XEDWmYi8LyL7RGRVLuMDu32papn6AToAZwI/4JQwz2ma8sAmoDUQBiwHOrrjngPud7vvB54twtjy1bYb5x6cB2UAHgPuDsA68ysuYCtQr7B/V1HGBTQCerrdNYANPp9lkawvr+3FZ5ohwJeAAP2A3/2dN8BxDQBOc7svPhmX1+dZjLGdC3xWkHkDGVe26S8Dvgv0OgPOBnoCq3IZH9Dtq8wdUajqWlVdn8dkfYB4Vd2sqmnAbJwCheB/ifSCyG/bFwCbVLWgT6H7q7B/c6DWWZ7tqupuVV3idh/FKQPTpIiWf5LX9uIb61R1LAJqi1PnzJ95AxaXqv6mqofc3kVA0yJadqFjC9C8Rd32MGBWES07V6r6E3DQY5KAbl9lLlH4qQmww6c/gf99ueRZIr0Q8tv2dZy6kd7iHnq+X4SnxfyNS4GvRSRORMYWYP5AxQWAiLQEegC/+wwuivXltb3kNY0/8xZUftsehbNXelJun2dxxtZfRJaLyJci0imf8wYyLkSkKjAY+MhncCDXmZeAbl8Bqx4bTCLyDXB6DqMeUtWcChCe0kQOw4rkPmKv2PLZThjwN+ABn8FvAU/gxPoE8AIQWYxxDVTVXSLSAFggIuvcPaECK8L1VR3nH/p2VT3iDi7w+srefA7Dsm8vuU0TsG0tP22LyHk4ieIsn8FF/nnmM7YlOKdVj7nXjz4G2vo5byDjOuky4FdV9d3TD+Q68xLQ7atUJgr1KHHupwSgmU9/U/73dj1/SqQXKDbxr/z6SRcDS1R1r0/bf3SLyLvAZ8UZl6rucn/vE5H5OIe9P1GIdVYUcYlIRZwkMUNV5/m0XeD1lY3X9pLXNGF+zFtQ/sSFiHQFJgMXq+qBk8M9Ps9iic0noaOqX4jImyJSz595AxmXj1OO6AO8zrwEdPuyU085iwHaikgrd8/9OpzS6OBfifSCyk/bp5wbdb8sT7ocyPEOiUDEJSLVRKTGyW7gIp/lB2qd+ROXAO8Ba1X1xWzjimp9eW0vvrEOd+9O6Yfzxsbdfs5bUHm2LSLNgXnATaq6wWe41+dZXLGd7n5+iEgfnO+rA/7MG8i43HhqAefgs80VwzrzEtjtq6ivzof6D84XQgKQCuwF/usObwx84TPdEJw7ZDbhnLI6Obwu8C2w0f1dpwhjy7HtHGKrivMPUyvb/NOAlcAKd2NoVFxx4dxVsdz9WV0c68zPuM7COdReASxzf4YU9frKaXsBxgPj3W4B3nDHr8TnjrvctrUiWkd5xTUZOOSzbmLz+jyLMbZb3GUvx7nQPiAU1pnbPxKYnW2+gK0znJ3C3UA6zvfXqOLcvqyEhzHGGE926skYY4wnSxTGGGM8WaIwxhjjyRKFMcYYT5YojDHGeLJEYYwfRORYANpsKSLXF3W7xhQ1SxTGBE9LwBKFCXmWKIzJB3HekfCDiHwoIutEZIbP08NbReRZEVns/rRxh0eLyFU+bZw8OnkG+Is47y64w2OZvd3ChZXdp39Xi0jnQP6dxvgqlbWejAmwHkAnnJo5vwIDgV/ccUdUtY+IDAdeBi71aOd+nPdheE2DqsaIyKfAk0AVYLqqFldpCGPsiMKYAlisqgmqmoVT9qKlz7hZPr/7F+EyHwcuBMJxXthkTLGxRGFM/qX6dGfy5yNzzaE7A/d/zT1NFVaAZdYBquO8pa9yAeY3psAsURhTtK71+b3Q7d4K9HK7hwIV3e6jOF/8AIhIExH5Npd2JwGPADOAZ4swXmPyZNcojClalUTkd5ydsGHusHeBT0RkMU6V22R3+AogQ0SWA9HAzzhHH3/iXu/IUNWZIlIe+E1EzlfV7wL7pxjjsOqxxhQREdmKU955fwHnvwXYrqpF9W4FY4qEHVEYEyJU9fVgx2BMTuyIwhhjjCe7mG2MMcaTJQpjjDGeLFEYY4zxZInCGGOMJ0sUxhhjPP0/bKSI3BSKs4YAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "backlash = ct.friction_backlash_nonlinearity(0.5)\n", + "theta = np.linspace(0, 2*np.pi, 50)\n", + "x = np.sin(theta)\n", + "plt.plot(x, [backlash(z) for z in x])\n", + "plt.xlabel(\"Input, x\")\n", + "plt.ylabel(\"Output, y = backlash(x)\")\n", + "plt.title(\"Input/output map for a friction-dominated backlash nonlinearity\");" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAA0W0lEQVR4nO3deXwddb3/8de7adO0Wdp03ze6UaBAW/Z9UVkFF5aCC4ggKq5Xxfu7XuAqXldUFLEisnhBUFlkERGRfactlNJ9b9Okbdo0TdI0zfb5/TETPKTJySTNnJPkfJ6Px3nkzP7JnDnzOfP9zny/MjOcc85lrl7pDsA551x6eSJwzrkM54nAOecynCcC55zLcJ4InHMuw3kicM65DOeJoJuQdKmkpxKGTdLkKPN2chzTJL0lqVLSl+PYRivbHSepSlJWDOs+TtKqcP3nd/b629j2yZKKYljvXZJubO+0dqz/Mkkv7c86OkPzOMLPcFIa4ojt+EwFTwRtkLRe0p7wxFcu6RVJV0tK6b4zs3vN7IOdPW8HfAt4zszyzeyXMW2jab+f3jRsZhvNLM/MGmLY3HeBW8L1/zWG9bsUCT/DtWnY7vuOT0nPSfpsquPoKE8E0ZxrZvnAeOCHwLXA71O1cUm9U7WtCMYDS9IdRCfr8P/UxT4blwY94RjwRNAOZrbLzB4FLgI+LelgAEl9Jf1U0kZJWyXNk9QvnDZE0uPh1USZpBebriYkjZX0kKRSSTsk3RKOv0zSy5J+LqkMuKGVS/GzJK2VtF3STxLW2/xy2cKrmFWSdkr6tSSF07Ik3RSuY52ka8L59zm4JT0DnALcEl4GT23+y6c92w6nXylpWXjFtVTSLEn/B4wDHgu38y1JExLjkjRK0qPhPl0t6cqEdd4g6c+S/hCud4mkOS19ppLWAJMSttU3wrofkHSPpArgshbWebaC4rMKSZsk3dDStpst8//Cz2C9pEujrkvS8eFVank4vaV48iU9K+mXifs+nFYYHp+l4efzuKQxCdMvC4+xyvD4uLTZ8j8Nl1sn6cwk/996Sd+Q9I6kXZL+JCknYfqV4b4uC/f9qIRpSY+hZtt5r8hUQRHYryX9LYz/dUkHJMw7XdI/w22ukHRhlP2ecCxeIWkj8Ezi8Snp+8AJ/Pt7cksYx03NYn1M0ldb22cpZWb+SvIC1gOntzB+I/D58P0vgEeBQUA+8Bjwg3DaD4B5QJ/wdQIgIAtYBPwcyAVygOPDZS4D6oEvAb2BfuG4lxK2b8Cz4TbHASuBzyYs33zex4GB4bylwBnhtKuBpcAYoBB4Opy/dyv747mm7bQy3J5tXwBsBo4I98lkYHxL+x2YkBgX8Dxwa7jfDgvXe1o47QagBjgr3M8/AF6L+hlHWHcdcD7BD6l+LazvZOCQcPpMYCtwfivbPjn8rH8G9AVOAnYD09paV7g/K4G5BMfWYOCwcNpdwI3huDeAGxO2eVfTcDj9Y0B/gmP3L8Bfw2m5QEVCLCOBgxI+5zrgynAffx4oBpRkH78BjCI4ZpcBV4fTTgW2A7PCffAr4IWIx9Bl7Hu8TU74P8uAIwm+R/cC9yf8b5uAy8Nps8IYDoqw3yeE2/lDuJ5+7Ht8Psf7vxdHhvunVzg8BKgGhqf7HGdmfkWwH4qBQeEvkyuBr5lZmZlVAv8LXBzOV0fwBRpvZnVm9qIFR8KRBF+Kb5rZbjOrMbPEX/zFZvYrM6s3sz2txPCjcJsbCZLR3CTx/tDMysN5nyU4wQFcCNxsZkVmtpOg6KuztbbtzwI/NrM3LbDazDa0tTJJY4HjgWvD/fY2cDvwyYTZXjKzJywos/0/4NAogUZc96tm9lcza2zpszGz58xscTj9HeA+ghN8Mv9tZnvN7HngbwSfS1vruhR42szuC4+tHWG8TUYRJLW/mNl3WtpouMyDZlYdHrvfbxZrI3CwpH5mVmJmiUVoG8zsd+E+vpvgOB+e5H/8pZkVm1kZwY+lwxL+jzvMbKGZ7QX+EzhG0oSEZVs7htrykJm9YWb1BImgablzgPVmdmf4HVsIPAh8PNwvUT7DG8Lvbmvfz/eY2RvALuC0cNTFBHVtWyP+H7HyRNBxowl+bQwl+DW1ILw8LweeDMcD/ARYDTwVXmJ/Oxw/luCLVN/K+jdFiCFxng0EX/zWbEl4Xw3khe9HNVtPlO22V2vbHgus6cD6RgFNSbfJBoLPpLVt5ihaWW6UdSfdR5KOCotiSiXtIrjqGpJkkZ1mtrvZ9kZFWFdb++9sgl+r85LE2l/SbyVtCIu6XgAGSsoKY7oo3GZJWMQyPWHx9/axmVWHb/NoXbJj8L0fAGZWBewg+eeZbDtRtjkeOKrpOxt+by8FRkDkz7C935W7gU+E7z9B8AOlS/BE0AGSjiA4SF8iuJzcQ3BJOTB8DTCzPAAzqzSz/zCzScC5wNclnUZwEI1LcnKK0izs2IT34wiuUtqrhKBYqKV1RrGbIBE2GdGOZTcBB7QyLdn/33Q1lp8wbhxBMdP+irLutj6bPxIUFY41swEEJ+IWy7RDhZJym22v6bNMtq5k+w/gdwQ/Sp5otv5E/wFMA44yswLgxHC8AMzsH2b2AYJf+8vDdXa2YoITc7DhINbBdM7n2ZpNwPMJ39mBFtz18/lwepTPMNlx0NK0e4DzJB0KHAj8db/+g07kiaAdJBVIOge4H7in6dKR4Mvxc0nDwvlGS/pQ+P4cSZPDIqQKoCF8vUFwEv6hpFxJOZKOa2dI3wwr+8YCXwH+1IF/68/AV8KYBxLcEdUebwMfDX9ZTgauaMeytwPfkDRbgcmSmk4IWwkqcfdhZpuAV4AfhPttZrjde9sZe1zrzie4qqiRdCRwSYRl/kdStqQTCIot/hJhXfcCp0u6MKykHCzpsGbrvQZYATyu8AaGFmLdA5RLGgRc3zRB0nBJHw5PzHuBKoJjt7P9Ebhc0mGS+hIUrb5uZutj2FaTx4Gpkj4pqU/4OkLSgeH0jnyGifY5fs2sCHiT4ErgwShFSqniiSCaxyRVEvyK+C+Cir3LE6ZfS1D881p4ef00wa8sgCnhcBXwKnBrWP7YQHCFMJmg4rmI4DK8PR4BFhCcjP9Gx25p/R3wFPAO8BbwBEHlZdQv/M+BWoID/27accI0s78QlEn/kaDS868EFYkQVPB+J7xs/0YLi88lqKArBh4Grjezf0bddhv2d91fAL4bHjPXESTbZLYAO8Pt3UtQibq8rXWF5eVnEfyqLyM4Dt5XFxLWR11FcOw+ooQ7dUK/ICg+2g68RnAF0aRXuO7icP0nhfF0KjP7F/DfBGX0JQRXORcnXWj/t1kJfDDcTjHBZ/AjgspqaP9n2NzNwMcV3OWU+LzN3QSV0F2mWAjCGn7nmii4BXCemY1vc2bnXLtIOpGgiGhCWJrQJfgVQYaT1E/SWWHRwmiCooGH0x2Xcz2NpD4ERbi3d6UkAJ4IXFAB9j8ERRNvEdzffV1aI3KuhwnrHsoJKt1/kdZgWuBFQ845l+H8isA55zJct2ssaciQITZhwoR0h+Gcc93KggULtpvZ0JamdbtEMGHCBObPn5/uMJxzrluR1GrzLV405JxzGc4TgXPOZThPBM45l+E8ETjnXIbzROCccxnOE4FzzmU4TwTOOZfhut1zBM451xM1NhqVe+up2FNHRU0dFXvqqaypo6ImGFdZU8+s8QM5YUqLz4TtF08EzjnXScyM3bUNlFfXUl5dF7z21LJrT13wqq779/vwVVETjK/cW09bTb99/uQDPBE451yqNDYalTX1lFXXUrZ7L2W769i5u5ay6lp2VtdSvrsu+FtdR1n4d9eeWuoaWj+bZ/fuxYB+fd57DS/IYerwfApyejOgXx8Kml45fSjo1zv4G77P69ub3lnxlOZ7InDOZQQzo2pvPduratlRtZftVXvD98GJfvvuWsqqainbXcuO3XvZWV1HQ2PLJ/XsrF4M7N+Hwv7ZDOzfh8lD8yjMDd4P7BeMHxC+HxjOM6BfH3L6ZKX4v47GE4FzrlvbW9/Atoq9bKvcS2nlXkqrwr8Jw9srgxP/3vqW+4MpyOnN4Ly+DM7NZvzg/swaP5BBudkU9s9mcF7wt2l4UG42/bOzCLoh7xk8ETjnuqSGRmNH1V62VNRQsquGrRU1bNlVw9aKvWyrrGFbxV62VtZQXl23z7ISDM7ty9D84HXA0FyG5vVlcF42Q/L6MjivL0Pyshmc25dBudlk987sGyg9ETjnUs7MKNtdy+byPRSX76G4vIYtFTUUl++hZFcNJeV72Fq5d5+imaxeYlh+X4YX5DB+cH+OmFjI8PwchhX0ZVj4d2h+Xwb1z46tPL0nSpoIJB0DfAI4gaCLtT3Au8DfgHvMbFfsETrnuh0zo7RyL5t27qFoZzVFCX+bTv41de8vpsnu3YtRA3IYMSCHoycNZuTAHEYU5DC8IBg3oiCHwXl9yerVc4pkuopWE4GkvwPFwCPA94FtQA4wFTgFeETSz8zs0VQE6pzrWmrqGthYVs2GHdVsLKtm447dbCirZlNZcMJvXh4/ODeb0YX9mDY8n1OnDWPUwH6MLuzH6IH9GDkgh0G52T2q3L07SXZF8Ekz295sXBWwMHzdJGlIbJE559Jub30Dm8qqWVu6m/U7drNue/Bav72aLRU175s3r29vxg3qz5Rh+Zw6fRhjB/VnTGE/xhb2Z0xhf/pld807ZlySRNBCEgBA0nHAJWb2xdbmcc51Lzt317KmtIo1pVWs3lbFmtLdrCmtYlNZNYnF9IX9+zBxSC7HTh7M+EG5jB/cn3GD+zN+UH//Rd+NRaoslnQYcAlwIbAOeCjGmJxzMdlVXcfKbZWs3FrJyi2VrNxaxaptlWyvqn1vnuzevZg0JJeDRw/gvENHMXFoLhOH5DFxcC4D+vdJY/QuLsnqCKYCFwNzgR3AnwCZ2Skpis0510H1DY2s37GbpSWVLCupYHlJBctKKt9XnJObncWU4UExzpRh+UwelscBQ/MYXdjPK2QzTLIrguXAi8C5ZrYaQNLXUhKVcy6ymroGVm6tZPHmXby7uYIlxbtYsaXyvcra3r3E5GF5HHPAYKaNyGfa8HymDM9j9MB+XpTjgOSJ4GMEVwTPSnoSuB/wo8a5NKpvaGT5lkoWFZWzaFM5izdXsGprJfVhQf6Afn04aFQBnzpmPAeOLGD6iAImD8vL+AemXHLJKosfBh6WlAucD3wNGC7pN8DDZvZUakJ0LnOV7NrDgg07WbSpnLc3lbN486737r8v7N+Hg0cP4JRpkzhk9AAOHj2AMYX+K9+1X5uVxWa2G7gXuFfSIOAC4NuAJwLnOlFDo7FiSyULNpQxf8NO5q/fyebyPUBQgXvwqAIuOXI8h44dwOFjCxk7yE/6rnMkqyzOM7OqxHFmVgb8Nny1OI9zLpqGRmNJ8S5eXbOD19buYP76nVTurQdgeEFf5owfxGdPmMjs8YVMH1HgxTsuNsmuCB6R9DbBk8ULwisDJE0CTgYuAn4HPBBzjM71CGbGspJKXlmznVfX7OCNdWXvnfgPGJrLuYeN4ogJhcwZP8iLeFxKJasjOE3SWcDngOPCYqE6YAVBW0OfNrMtqQnTue5pe9VeXlxVyosrt/PCqu1sr9oLwMQhuZxz6CiOOWAwR08cxLCCnDRH6jJZ0joCM3sCeCJFsTjX7TU0Gm9vKudfy7by/MpSlhRXADAoN5vjJw/hxKlDOX7yEEYM8BO/6zqS1RGMS7agmW3s/HCc636qa+t5cdV2nl66lWeWb2PH7lqyeonZ4wv55oemccKUIRw8agC9/CEt10UluyL4G2C8/9kBA4YCwwBvQcplrF3Vdfxj6Rb+vriEl9fsoLa+kfyc3pwybRinzxjOSVOHMqCfN8fguodkdQSHJA5LmgBcC5wO/G+8YTnX9TSd/J9YXMJLq7ZT32iMKezHJ44az+kHDuOIiYPo452huG6ozecIJE0B/gs4CrgJ+LKZ7ds3nHM9UHVtPU8t2cojb2/mpdXbqWsITv5XHD+Rs2eO5JDRA/zuHtftJasjOJggARwE/Bi4wswaUhWYc+nS2Gi8vq6MhxYW8cTiEnbXNjB6YD8+c9xEzjpkJDPH+Mnf9SzJrggWAZsI6gqOBI5MPPjN7MvxhuZcam3cUc0DCzbx0FubKdq5h7y+vTl75kg+NmsMR0wY5JW9rsdKlgg+s78rl3QGcDNBxfLtZvbDZtMHAPcA48JYfmpmd+7vdp2Lqr6hkWeWb+Oe1zfywspSegmOnzKUb35oGh+cMcJ71XIZIVll8d37s2JJWcCvgQ8ARcCbkh41s6UJs30RWGpm50oaCqyQdK+Z1bawSuc6zbaKGu5/cxP3vbGRkl01jCjI4aunT+HiI8b5Pf4u40TqoayDjgRWm9laAEn3A+cBiYnAgHwFZU55QBlQH2NMLsMt2lTO715cy5PvbqG+0ThhyhCuP/cgTj9wGL39jh+XoeJMBKMJ6hiaFBHceZToFuBRoBjIBy4ys8bmK5J0FXAVwLhxSZ9zc24fZsZzK0r57QtreG1tGfk5vbns2AlcevR4Jg7JTXd4zqVdnImgpZo1azb8IeBt4FTgAOCfkl40s4r3LWR2G3AbwJw5c5qvw7kW1dY38uiiYm57YQ0rt1YxckAO3zn7QC46Yiz5Of6wl3NN2p0IJH2BoA/jB80sWTFOETA2YXgMwS//RJcDPzQzA1ZLWgdMB95ob1zONamtb+RP8zdx67OrKdlVw7Th+fzswkM5Z+Yob8rZuRZ05IpAwPHApcCHk8z3JjBF0kRgM0G3l5c0m2cjcBrwoqThwDRgbQdico76hkYeemszNz+9is3le5g9vpAffPQQTpo61O/7dy6JdicCM/t1xPnqJV0D/IPg9tE7zGyJpKvD6fOA7wF3SVpMkGCuNbPt7Y3JZbaGRuPxd4r5xdOrWLd9NzPHDOD7HznYE4BzEUVpYqIvQUf2ExLnN7PvtrVsS81Yhwmg6X0x8MHo4Tr3fs+u2MYPnljGyq1VTB+Rz22fnM0HZgz3BOBcO0S5IngE2AUsAPbGG45z0awtreJ7jy/l2RWlTBySyy2XHM5ZB4/0p3+d64AoiWCMmZ0ReyTORVBRU8ev/rWKu15ZT9/eWfzXWQfy6WMneCWwc/shSiJ4RdIhZrY49mica0Vjo/HAgiJ+/I/l7NhdywWzx/DND01naH7fdIfmXLcXJREcD1wW3tq5l6BS18xsZqyRORdaU1rFtx54hwUbdjJ7fCF3XHYEM8cMTHdYzvUYURLBmbFH4VwL6hsauf2ldfzsnyvp1yeLn15wKB+bNdorgp3rZG0mAjPbIOlQ4IRw1ItmtijesFymW7m1km/+ZRGLinbxwRnDufH8gxlW4I3BOReHKLePfgW4EngoHHWPpNvM7FexRuYyUl1DI799fg2//Ndq8nJ686u5h3POzJF+FeBcjKIUDV0BHGVmuwEk/Qh4FfBE4DrVprJqrrnvLRZtKufsmSP57ocPYnCeVwY7F7coiUBAYheVDbTcoJxzHfbUki184y+LMODWS2dx1iEj0x2ScxkjSiK4E3hd0sPh8PnA72OLyGWUuoZGfvT35dz+0joOGT2AX18yi3GD+6c7LOcySpTK4p9Jeo7gNlIBl5vZW3EH5nq+zeV7uOaPC3lrYzmfOmY8/3X2gfTt7V1DOpdqrSYCSQVmViFpELA+fDVNG2RmZfGH53qqZ5dv42t/fpv6BuOWSw7nnJmj0h2Scxkr2RXBH4FzCNoYSuwMRuHwpBjjcj3Y719ax41/W8r0EQXceuks7yXMuTRL1nn9OeHfiakLx/VkDY3GjX9byp0vr+dDBw3nFxcdTr9sLwpyLt3abKlL0r+ijHMumT21DXzh3gXc+fJ6PnPcRG69dLYnAee6iGR1BDlAf2CIpEL+fctoAeAFui6y7VV7+ezd81lUVM5158zgM8f7RaZzXUmyOoLPAV8lOOkv4N+JoAKI1EuZc2tKq7j8zjfZVlnDvE/M5kMHjUh3SM65ZpLVEdwM3CzpS96chOuIdzfv4hO/f50sifuuPJrDxxWmOyTnXAui9ObRKGlg04CkQklfiC8k1xMsKd7Fpbe/Tm52bx76wrGeBJzrwqIkgivNrLxpwMx2EjRC51yLlpVU8InbXyc3O4v7rzqa8YP99lDnurIoiaCXEpp+lJQFZMcXkuvOVmyp5NLbX6dv7yzuu+poxg7y5iKc6+qitDX0D+DPkuYRPEh2NfBkrFG5bmn1tkouvf01+mSJ+/xKwLluI0oiuJbgDqLPE9w59BRwe5xBue5nTWkVc3/3OpL445VH+9PCznUjURqdawR+E76c28eGHbuZe9trmMH9Vx3FAUPz0h2Sc64dovRQdhxwAzA+nL+p83pva8ixa08dn7nrTWobGvnz545h8rD8dIfknGunKEVDvwe+RvBQWUMb87oMUt/QyDV/XMjGsmruueIopg73JOBcdxQlEewys7/HHonrdr73+FJeXLWdH39sJkdNGpzucJxzHRQlETwr6ScEndfvbRppZgtji8p1ef/36nrufnUDV504iQuPGJvucJxz+yFKIjgq/DsnYZwBp3Z+OK47eGnVdm54bCmnTR/GtWdMT3c4zrn9FOWuoVNSEYjrHtaUVvGFexcwZVgeN889nKxeansh51yXFuWuoetaGm9m3+38cFxXVl5dyxV3vUl2717c/uk55PWNckHpnOvqonyTdye8zyHovnJZPOG4rsrM+PqfF1FcXsN9Vx3FmEJvOsK5niJK0dBNicOSfgo8GltErku69/WNPLN8GzecO4PZ4welOxznXCeK0uhcc/2J2HG9pDMkrZC0WtK3W5nnZElvS1oi6fkOxONitqa0ihv/tpSTpg7l08dOSHc4zrlOFqWOYDHBXUIAWcBQoM36gbCV0l8DHwCKgDclPWpmSxPmGQjcCpxhZhslDWv3f+BiVdfQyFfvf5t+fbL4ycdnktAQrXOuh0jWZ/FEM1tHUCfQpB7Yamb1EdZ9JLDazNaG67sfOA9YmjDPJcBDZrYRwMy2tTN+F7Obn17F4s27mPeJWQwryEl3OM65GCQrGnog/HuHmW0IX5sjJgGA0cCmhOGicFyiqUChpOckLZD0qYjrdinw5voybn1uNRfOGcMZB49MdzjOuZgkKxrqJel6YKqkrzefaGY/a2PdLZUhWLPh3sBs4DSgH/CqpNfMbOX7ViRdBVwFMG7cuDY26zpDZU0dX/vT24wp7M915x6U7nCcczFKdkVwMVBDcLLOb+HVliIgse2BMUBxC/M8aWa7zWw78AJwaPMVmdltZjbHzOYMHTo0wqbd/rrh0aUUl+/h5xcd5s8LONfDtfoNN7MVwI8kvdPBRufeBKZImghsJkgslzSb5xHgFkm9Cbq/PAr4eQe25TrRE4tLeHBhEV8+dTKzx3un8871dFGeI+hQy6NmVi/pGoKuLrMI6hqWSLo6nD7PzJZJehJ4B2gEbjezdzuyPdc5KmrquO6Rd5k5ZgBfOm1KusNxzqVArNf8ZvYE8ESzcfOaDf8E+Emccbjofvn0KnbsruWuy4+kT1ZHHjNxznU3/k1371m9rYq7XlnPRXPGcvDoAekOxzmXIlEeKPtoC6N3AYv9vv+ew8z43uNL6ZedxTc+NC3d4TjnUihK0dAVwDHAs+HwycBrBLeVftfM/i+m2FwKPbN8G8+vLOU7Zx/IkLy+6Q7HOZdCURJBI3CgmW0FkDQc+A3BHT4vAJ4Iurna+ka+9/hSJg3N5VPHTEh3OM65FItSRzChKQmEtgFTzawMqIsnLJdKd768jvU7qrnunBlk9/ZqI+cyTZQrghclPQ78JRz+GPCCpFygPK7AXGpsq6zhV8+s5rTpwzh5mrf551wmipIIvkhw8j+OoNmIPwAPmpkB3o1lN/fjJ1ewt76B75wzI92hOOfSJMoDZUbQAN0Dbc3rupe3N5XzwIIiPnfSJCYOyU13OM65NGmzQFjSRyWtkrRLUoWkSkkVqQjOxcfM+J/HljA0vy9fOtWfIHYuk0WpGfwx8GEzG2BmBWaWb2YFcQfm4vX8ylLe2ljOf3xgqjcq51yGi5IItpqZd1bfw9z63BpGDsjho7PGpDsU51yaRfkpOF/Sn4C/AnubRprZQ3EF5eI1f30Zb6wr89tFnXNAtERQAFQDH0wYZ4Angm7q1ufWUNi/DxcfObbtmZ1zPV6Uu4YuT0UgLjWWlVTwzPJtfP0DU+mf7XUDzrnkndd/y8x+LOlX7NvFJGb25Vgjc7H4zXNryM3O4tPelIRzLpTsJ2FTBfH8VATi4rdhx24ef6eYK0+YxID+fdIdjnOui0jWVeVj4d+7ASQVBINWmaLYXCf77Qtr6Z3ViyuOn5juUJxzXUiUB8rmSFpM0J3ku5IWSZodf2iuM22rqOGB+UV8fPYYhhXkpDsc51wXEqW28A7gC2b2IoCk44E7gZlxBuY61+9fWkd9YyOfO3FSukNxznUxUW4ir2xKAgBm9hLgxUPdyK7qOu55bQPnHjqK8YO9TSHn3Pslu2toVvj2DUm/Be4juHvoIuC5+ENzneXuV9ezu7aBz598QLpDcc51QcmKhm5qNnx9wvt9bid1XVN1bT13vryO06YPY/oIbyLKObevZHcNeV8DPcDj75Sws7qOz53kVwPOuZYlKxr6hJndI+nrLU03s5/FF5brLA8sKGLS0FyOmFCY7lCcc11UssriplrF/FZerovbsGM3b6wr4+OzxyAp3eE457qoZEVDv5WUBVSY2c9TGJPrJA8uKKKX4KOHe1PTzrnWJb191MwagA+nKBbXiRobjQcXbuaEKUMZMcAfIHPOtS7KA2WvSLoF+BOwu2mkmS2MLSq3315Zs4PN5Xv49pnT0x2Kc66Li5IIjg3/fjdhnAGndn44rrM8sGATBTm9+cCM4ekOxTnXxUXpj8BvI+1mKmrq+Pu7W7hgzhhy+mSlOxznXBcXpdG5/5U0MGG4UNKNsUbl9svji0rYW9/IBbO9BzLnXNuitDV0ppmVNw2Y2U7grNgicvvtgQWbmDIsj5ljBqQ7FOdcNxAlEWRJ6ts0IKkf0DfJ/C6NVm+rYuHGci6Y488OOOeiiZII7gH+JekKSZ8B/gncHWXlks6QtELSaknfTjLfEZIaJH08WtiuNQ8uLCKrlzj/8NHpDsU5101EqSz+saR3gNMBAd8zs3+0tVz4MNqvgQ8ARcCbkh41s6UtzPcjoM11uuQaGo2HFhZx8tShDMv3Zwecc9FEqSzOBZ4ys28AtwF9JUXp8PZIYLWZrTWzWuB+4LwW5vsS8CCwLXrYriUvrCpla8VePj7bnyR2zkUXpWjoBSBH0mjgaeBy4K4Iy40GNiUMF4Xj3hOu8yPAvCjBuuQeWFBEYf8+nHagPzvgnIsuSiKQmVUDHwV+ZWYfAWZEWa6Fcc37MfgFcG3YlEXrK5KukjRf0vzS0tIIm8485dW1/HPJVs47bDTZvaN8rM45F4jyZLEkHQNcClzRjuWKgMQb2ccAxc3mmQPcH97dMgQ4S1K9mf01cSYzu42gWIo5c+Z4pzgt+NviEmobGr1YyDnXblFO6F8F/hN42MyWSJoEPBthuTeBKZImApuBi4FLEmcws4lN7yXdBTzePAm4aP61bBvjBvXnoFHeC5lzrn2i3DX0PPB8WGmMma0FvhxhuXpJ1xDcDZQF3BEmkqvD6V4v0En21Dbw8urtzD1ynD874JxrtzYTQVgs9HsgDxgn6VDgc2b2hbaWNbMngCeajWsxAZjZZVECdvt6de129tY3csr0YekOxTnXDUWpVfwF8CFgB4CZLQJOjDEm107PLN9Gvz5ZHDVxULpDcc51Q5FuLzGzTc1GJb3Lx6WOmfHs8lKOnzLEWxp1znVIlESwSdKxgEnKlvQNYFnMcbmIVm6tYnP5Hk71YiHnXAdFSQRXA18keBisCDgsHHZdwDPLgweyT5nmicA51zFR7hraTvAMgeuCnlm+lRkjC7xfYudch7WaCCT9in2fBH6PmbV5C6mLV3l1LQs27OQLJ09OdyjOuW4sWdHQfGABkAPMAlaFr8PwyuIu4fmVpTQanHqgFws55zqu1SsCM7sbQNJlwClmVhcOzwOeSkl0Lqlnl29jUG42h44ZmO5QnHPdWJTK4lFAfsJwXjjOpVFDo/H8ylJOnjqUrF7+NLFzruOitDX0Q+AtSU3tC50E3BBbRC6StzftZGd1nT9N7Jzbb1HuGrpT0t+Bo8JR3zazLfGG5dryr2XbyOolTpw6NN2hOOe6uShXBIQn/kdijsW1wzPLtzFnfCED+kXpLM4551rnPZh0Q8Xle1i+pdKfJnbOdYpWE0HYj4Drgp5dETxN7InAOdcZkl0RPAAg6V8pisVF9OzybYwp7MfkYXnpDsU51wMkqyPoJel6YKqkrzefaGY/iy8s15qaugZeXr2DC+aM8U5onHOdItkVwcVADUGyyG/h5dLg1bU72FPX4MVCzrlOk+zJ4hXAjyS9Y2Z/T2FMLonnV5TSr08WR08anO5QnHM9RJS7hl6R9DNJ88PXTZIGxB6Za9Eb68qYPb7QO6FxznWaKIngDqASuDB8VQB3xhmUa9nuvfUs31LBrHED0x2Kc64HifJA2QFm9rGE4f+R9HZM8bgkFhWV02hw+PjCdIfinOtBolwR7JF0fNOApOOAPfGF5Frz1sZyAA4fOzCtcTjnepYoVwRXA39IqBfYCXw6vpBca97auJNJQ3MZ2D873aE453qQKI3OLQIOlVQQDlfEHpXbh5mxcGO53zbqnOt0kRqdA08A6baxrJqy3bUc7hXFzrlO5o3OdRMLN+4EYNY4ryh2znUuTwTdxMIN5eT17c3U4f5Qt3Ouc7WZCCT1l/Tfkn4XDk+RdE78oblECzfu5NCxA7xbSudcp4tyRXAnsBc4JhwuAm6MLSK3j+raepZvqeTwsV4s5JzrfFESwQFm9mOgDsDM9gD+szSF3inaRUOjMWv8wHSH4pzrgaIkglpJ/QADkHQAwRWCS5GmimK/InDOxSHK7aPXA08CYyXdCxwHXBZnUO793tpYzsQhuRTm+oNkzrnOF+WBsn9KWggcTVAk9BUz2x57ZA4IHiR7a+NOTpw6NN2hOOd6qFYTgaRZzUaVhH/HSRpnZgvjC8s12VS2h+1Vtf78gHMuNsmuCG4K/+YAc4BFBFcEM4HXgeNbWe49ks4AbgaygNvN7IfNpl8KXBsOVgGfD5u0cKG3NvmDZM65eLVaWWxmp5jZKcAGYJaZzTGz2cDhwOq2ViwpC/g1cCYwA5graUaz2dYBJ5nZTOB7wG0d+zd6roUbdtI/O4upw72jeudcPKLcNTTdzBY3DZjZu8BhEZY7ElhtZmvNrBa4HzgvcQYze8XMdoaDrwFjIkWdQRZuLOfQMQPpneUPgTvn4hHl7LJM0u2STpZ0UviE8bIIy40GNiUMF4XjWnMF0GLfyJKuauoqs7S0NMKme4Y9tQ0sK6nw5wecc7GKkgguB5YAXwG+CiwNx7WlpYfOrMUZpVMIEsG1LU03s9vCoqk5Q4dmzt0zizfvor7R/PkB51ysotw+WgP8PHy1RxEwNmF4DFDcfCZJM4HbgTPNbEc7t9GjvfcgmTc97ZyLUZuJQNI6Wvglb2aT2lj0TWCKpInAZuBi4JJm6x4HPAR80sxWRg06UyzcsJMJg/szOK9vukNxzvVgUZ4snpPwPge4ABjU1kJmVi/pGuAfBLeP3mFmSyRdHU6fB1wHDAZulQRQb2ZzWltnJjEz3tpUzgmTh6Q7FOdcDxelaKh5cc0vJL1EcBJva9kngCeajZuX8P6zwGejhZpZinbuobRyrxcLOediF6VoKPEJ414EVwjeO0rM/l0/4BXFzrl4RSkauinhfT3BQ2AXxhOOa/LWxnL69cli+gjPuc65eEVJBFeY2drEEWEFsIvRWxt3MnPMAH+QzDkXuyhnmQcijnOdpK6hkWVbKpk5ZkC6Q3HOZYBkrY9OBw4CBkj6aMKkAoK7h1xM1pbupra+kYNGeSJwzsUvWdHQNOAcYCBwbsL4SuDKGGPKeEtLdgFw0KiCNEfinMsErSYCM3sEeETSMWb2agpjynhLiyvo27sXE4fkpjsU51wGSFY09K2w0/pLJM1tPt3MvhxrZBlsaUkF00fke0Wxcy4lkhUNNbUwOj8VgbiAmbGkuIIzDx6R7lCccxkiWdHQY+Hfu1MXjivZVUN5dR0zRnr9gHMuNZIVDT1GK81GA5jZh2OJKMMtLa4AYIZXFDvnUiRZ0dBPUxaFe8/SkgokmDbCE4FzLjWSFQ093/ReUjYwneAKYUXY9aSLwdLiCiYMziWvb5SHvp1zbv9FaXTubGAesIag17GJkj5nZi12K+n2z9KSCg4Z7Q+SOedSJ8r9iTcBp5jZyWZ2EnAK7e+tzEVQUVPHxrJqrx9wzqVUlESwzcxWJwyvBbbFFE9GW15SCXhFsXMutaIURC+R9ATwZ4I6gguAN5vaHzKzh2KML6MsLQ6blvBbR51zKRQlEeQAW4GTwuFSgq4qzyVIDJ4IOsmS4gqG5GUzNN/7KHbOpU6UriovT0UgLqgoPnBkAWH/zc45lxJR7hqaCHwJmJA4vz9Q1rlq6xtZtbWKy4+fkO5QnHMZJkrR0F+B3wOPAY2xRpPB1pRWUdvQ6E1LOOdSLkoiqDGzX8YeSYZralrC+yBwzqValERws6TrgaeAvU0jzWxhbFFloKUlFeT06cXEIXnpDsU5l2GiJIJDgE8Cp/LvoiELh10nWVpcwbQRBWT18opi51xqRUkEHwEmeftC8TEzlpZUcPbMkekOxTmXgaI8WbyIoN9iF5PiXTXs2uN9EDjn0iPKFcFwYLmkN3l/HYHfPtpJlmwOnij2piWcc+kQJRFcH3sUGa6pD4LpI/LTHYpzLgNFebL4+cRhSccBlwDPt7yEa6+lxRVMHJJL/2zvg8A5l3qRzjySDiM4+V8IrAMejDGmjLO0pILDxg5MdxjOuQyVrM/iqcDFwFxgB/AnQGZ2Sopiywi79tRRtHMPlxw1Lt2hOOcyVLIrguXAi8C5Tf0RSPpaSqLKIMtKws7q/Y4h51yaJLt99GPAFuBZSb+TdBpBV5WuEzU1LeF3DDnn0qXVRGBmD5vZRQSd1j8HfA0YLuk3kj4YZeWSzpC0QtJqSd9uYbok/TKc/o6kWR38P7qtpSUVDM3vy7D8nHSH4pzLUG0+UGZmu83sXjM7BxgDvA3sc1JvTlIW8GvgTGAGMFfSjGaznQlMCV9XAb9pV/Q9wNLiCi8Wcs6lVbvuVzSzMuC34astRwKrzWwtgKT7gfOApQnznAf8wcwMeE3SQEkjzaykPXFF8fzKUm58fGnbM6bYmtIqTpp2QLrDcM5lsDhvXB8NbEoYLgKOijDPaOB9iUDSVQRXDIwb17G7a/L69mbK8K7Xsuf0kQV8bNbodIfhnMtgcSaCliqWrQPzYGa3AbcBzJkzZ5/pUcweX8js8bM7sqhzzvVoURqd66giYGzC8BiguAPzOOeci1GcieBNYIqkiZKyCR5Oe7TZPI8CnwrvHjoa2BVH/YBzzrnWxVY0ZGb1kq4B/gFkAXeY2RJJV4fT5wFPAGcBq4Fq4PK44nHOOdeyWFs5M7MnCE72iePmJbw34ItxxuCccy65OIuGnHPOdQOeCJxzLsN5InDOuQznicA55zKcgvra7kNSKbChg4sPAbZ3YjidpavGBV03No+rfTyu9umJcY03s6EtTeh2iWB/SJpvZnPSHUdzXTUu6LqxeVzt43G1T6bF5UVDzjmX4TwROOdchsu0RHBbugNoRVeNC7pubB5X+3hc7ZNRcWVUHYFzzrl9ZdoVgXPOuWY8ETjnXIbrMYlA0hmSVkhaLWmfPpXDpq5/GU5/R9KsqMvGHNelYTzvSHpF0qEJ09ZLWizpbUnzUxzXyZJ2hdt+W9J1UZeNOa5vJsT0rqQGSYPCaXHurzskbZP0bivT03V8tRVXuo6vtuJK1/HVVlwpP74kjZX0rKRlkpZI+koL88R7fJlZt38RNHO9BpgEZAOLgBnN5jkL+DtBr2hHA69HXTbmuI4FCsP3ZzbFFQ6vB4akaX+dDDzekWXjjKvZ/OcCz8S9v8J1nwjMAt5tZXrKj6+IcaX8+IoYV8qPryhxpeP4AkYCs8L3+cDKVJ+/esoVwZHAajNba2a1wP3Aec3mOQ/4gwVeAwZKGhlx2djiMrNXzGxnOPgaQS9tcduf/zmt+6uZucB9nbTtpMzsBaAsySzpOL7ajCtNx1eU/dWatO6vZlJyfJlZiZktDN9XAssI+m5PFOvx1VMSwWhgU8JwEfvuyNbmibJsnHEluoIg6zcx4ClJCyRd1UkxtSeuYyQtkvR3SQe1c9k440JSf+AM4MGE0XHtryjScXy1V6qOr6hSfXxFlq7jS9IE4HDg9WaTYj2+Yu2YJoXUwrjm98W2Nk+UZTsq8rolnULwRT0+YfRxZlYsaRjwT0nLw180qYhrIUHbJFWSzgL+CkyJuGyccTU5F3jZzBJ/3cW1v6JIx/EVWYqPryjScXy1R8qPL0l5BInnq2ZW0XxyC4t02vHVU64IioCxCcNjgOKI80RZNs64kDQTuB04z8x2NI03s+Lw7zbgYYLLwJTEZWYVZlYVvn8C6CNpSJRl44wrwcU0u2yPcX9FkY7jK5I0HF9tStPx1R4pPb4k9SFIAvea2UMtzBLv8dXZFR/peBFc2awFJvLvCpODms1zNu+vbHkj6rIxxzWOoM/mY5uNzwXyE96/ApyRwrhG8O8HDo8ENob7Lq37K5xvAEE5b24q9lfCNibQeuVnyo+viHGl/PiKGFfKj68ocaXj+Ar/7z8Av0gyT6zHV48oGjKzeknXAP8gqEW/w8yWSLo6nD6PoO/kswi+FNXA5cmWTWFc1wGDgVslAdRb0LrgcODhcFxv4I9m9mQK4/o48HlJ9cAe4GILjrx07y+AjwBPmdnuhMVj218Aku4juNNliKQi4HqgT0JcKT++IsaV8uMrYlwpP74ixgWpP76OAz4JLJb0djju/xEk8ZQcX97EhHPOZbieUkfgnHOugzwROOdchvNE4JxzGc4TgXPOZThPBM45l+E8EbgeS9JHJJmk6Z24zpMlPR6+/3BTa4+Szpc0owPre05Suzojl9Rb0nZJP2jv9pxriScC15PNBV4ieEq005nZo2b2w3DwfKDdiaCDPgisAC5UeGO7c/vDE4HrkcJ2W44jaF/n4oTxJ0t6XtKfJa2U9EMFbfa/EbY1f0A4312S5kl6MZzvnBa2cZmkWyQdC3wY+EnYVv0Bib/0JQ2RtD5830/S/WGb8n8C+iWs74OSXpW0UNJfwv+hJXOBmwmexj26E3aXy3CeCFxPdT7wpJmtBMoSO/IADgW+AhxC8ETnVDM7kqA9ni8lzDcBOIng8f55knJa2pCZvQI8CnzTzA4zszVJ4vo8UG1mM4HvA7MhSBbAd4DTzWwWMB/4evOFJfUDTgMeJ2gLZ26SbTkXiScC11PNJWibnfBv4gnzTQvagN9L0KnHU+H4xQQn/yZ/NrNGM1tF0J5LZ9Q1nAjcA2Bm7wDvhOOPJihaejlsZuDTwPgWlj8HeNbMqgkaKfuIpKxOiMtlsB7R1pBziSQNBk4FDpZkBG2wmKRvhbPsTZi9MWG4kfd/J5q3v9Ke9ljq+fcPreZXEi2tR8A/zaytX/hzgeOaipoI2hE6BXi6HbE59z5+ReB6oo8T9OY03swmmNlYYB3vb4s/igsk9QrrDSYRVNC2ppKgm8Em6wmLfcJ4mrwAXAog6WBgZjj+NYIT/ORwWn9JUxM3IKkg/B/Ghf/XBOCLePGQ20+eCFxPNJegvfhEDwKXtHM9K4DnCZr/vdrMapLMez/wTUlvhYnjpwSta74CDEmY7zdAnqR3gG8BbwCYWSlwGXBfOO019i2K+ihBH7qJVzSPAB+W1Led/5tz7/HWR51rgaS7CDpXfyDdsTgXN78icM65DOdXBM45l+H8isA55zKcJwLnnMtwngiccy7DeSJwzrkM54nAOecy3P8HuqBOU5aSpegAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEWCAYAAAB42tAoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAA32ElEQVR4nO3deXxcZdn/8c83Syddkm7pvpeWspWllLIUsAgqFhQU5KGAgCgIPij+XHFfHn3ExxVERcSFfRMQREQBC6hAgZalpQst3du0adI2SdNmv35/nJN2miaTk+XMZLner9e8MjPnzLmvzJzkmns59y0zwznnnGtJVqYDcM4517V5onDOOZeSJwrnnHMpeaJwzjmXkicK55xzKXmicM45l5Inih5C0sWS/pH02CRNibJvJ8cxTdJrkiokfSaOMlood7ykXZKyYzj2bEkrw+Of29nHb6XsOZI2xnDcP0r6Xlu3teH4l0v6d0eO0RmaxhF+hpMzEEds52c6eKLoIElrJe0J/zHulPSCpKslpfW9NbO7zey9nb1vO3wJeNbM8s3sppjKaHzfz2h8bGbrzWyAmdXHUNx3gZvD4/85huO7NAk/w9UZKHe/81PSs5I+ke442ssTRef4gJnlAxOAG4AvA79LV+GSctJVVgQTgLcyHUQna/fv1MU+G5cBPeEc8ETRicyszMweA/4LuEzSEQCSEpJ+LGm9pK2SbpHUN9xWKOnxsDayXdK/GmsjksZJeljSNkmlkm4On79c0n8k/UzSduDbLVT150paLalE0o+Sjtu0Om5hLWilpB2SfilJ4bZsST8Jj7FG0rXh/gec/JL+CZwG3BxWsw9u+s2pLWWH26+UtCyssS2VNEPSncB44C9hOV+SNDE5LkmjJT0WvqerJF2ZdMxvS3pA0h3hcd+SNLO5z1TSO8DkpLISEY79J0l3SSoHLm/mmGcpaJ4rl7RB0rebK7vJa74afgZrJV0c9ViSTg5ruTvD7c3Fky9pvqSbkt/7cNvg8PzcFn4+j0sam7T98vAcqwjPj4ubvP7H4evWSHp/it9vraQvSHpTUpmk+yXlJW2/Mnyvt4fv/eikbSnPoSbl7G2SVdDE9ktJfw3jXyDpoKR9D5H0VFjmCkkXRHnfk87Fj0taD/wz+fyU9H3gFPb9ndwcxvGTJrH+RdJnW3rP0srM/NaBG7AWOKOZ59cD14T3fw48BgwB8oG/AD8It/0AuAXIDW+nAAKygTeAnwH9gTzg5PA1lwN1wKeBHKBv+Ny/k8o3YH5Y5njgbeATSa9vuu/jwKBw323AmeG2q4GlwFhgMPB0uH9OC+/Hs43ltPC4LWV/BNgEHBe+J1OACc2978DE5LiA54Bfhe/b0eFxTw+3fRuoAuaG7/MPgJeifsYRjl0LnEvwRaxvM8ebA0wPtx8JbAXObaHsOeFn/VMgAbwLqASmtXas8P2sAOYRnFtDgaPDbX8Evhc+9zLwvaQy/9j4ONx+HtCP4Nx9EPhzuK0/UJ4Uyyjg8KTPuRa4MnyPrwE2A0rxHr8MjCY4Z5cBV4fb3g2UADPC9+AXwPMRz6HLOfB8m5L0e24HZhH8Hd0N3Jf0u20APhZumxHGcHiE931iWM4d4XH6cuD5+Sz7/13MCt+frPBxIbAbGJHp/3Fm5jWKGG0GhoTfbK4E/p+ZbTezCuB/gQvD/WoJ/sAmmFmtmf3LgjNlFsEfzRfNrNLMqswsucaw2cx+YWZ1ZranhRh+GJa5niBZzUsR7w1mtjPcdz7BP0CAC4AbzWyjme0gaFrrbC2V/Qng/8zsFQusMrN1rR1M0jjgZODL4fv2OnAb8NGk3f5tZk9Y0GZ8J3BUlEAjHvtFM/uzmTU099mY2bNmtjjc/iZwL0ECSOUbZlZtZs8BfyX4XFo71sXA02Z2b3hulYbxNhpNkPQeNLOvN1do+JqHzGx3eO5+v0msDcARkvqaWZGZJTfRrTOz34bv8e0E5/mIFL/jTWa22cy2E3yZOjrp9/i9mS0ys2rgK8CJkiYmvbalc6g1D5vZy2ZWR5AoGl93NrDWzP4Q/o0tAh4Czg/flyif4bfDv92W/j73MrOXgTLg9PCpCwn6+rZG/D1i5YkiPmMIvq0MI/g2tjCs/u8EngyfB/gRsAr4R1iFvz58fhzBH1pdC8ffECGG5H3WEfxjaMmWpPu7gQHh/dFNjhOl3LZqqexxwDvtON5ooDEpN1pH8Jm0VGaeorUlRzl2yvdI0vFhU882SWUEtbbCFC/ZYWaVTcobHeFYrb1/ZxF8270lRaz9JP1G0rqwKe15YJCk7DCm/wrLLAqbcA5Jevne99jMdod3B9CyVOfg3i8IZrYLKCX155mqnChlTgCOb/ybDf9uLwZGQuTPsK1/K7cDl4T3LyH4AtMleKKIgaTjCE7ifxNUV/cQVFkHhbeBZjYAwMwqzOzzZjYZ+ADwOUmnE5xk41P884oy7e+4pPvjCWo5bVVE0OzU3DGjqCRIlI1GtuG1G4CDWtiW6vdvrM3lJz03nqAZq6OiHLu1z+YegqbIcWY2kOAfdbNt6qHBkvo3Ka/xs0x1rFTvH8BvCb60PNHk+Mk+D0wDjjezAuDU8HkBmNnfzew9BLWF5eExO9tmgn/cQcFBrEPpnM+zJRuA55L+ZgdZMGrpmnB7lM8w1XnQ3La7gHMkHQUcCvy5Q79BJ/JE0YkkFUg6G7gPuKuxakrwx/MzScPD/cZIel94/2xJU8ImqnKgPry9TPBP+gZJ/SXlSZrdxpC+GHZGjgOuA+5vx6/1AHBdGPMgghFdbfE68OHwm+kU4ONteO1twBckHavAFEmN/zC2EnQyH8DMNgAvAD8I37cjw3LvbmPscR07n6BWUiVpFnBRhNd8R1IfSacQNIs8GOFYdwNnSLog7EQdKunoJse9FlgBPK5wgEUzse4BdkoaAnyrcYOkEZI+GP7jrgZ2EZy7ne0e4GOSjpaUIGi6XWBma2Moq9HjwMGSPiopN7wdJ+nQcHt7PsNkB5y/ZrYReIWgJvFQlCardPFE0Tn+IqmC4FvI1wg6Hj+WtP3LBM1LL4XV96cJvqUBTA0f7wJeBH4Vtn/WE9QwphB0jG8kqOa3xaPAQoJ/1n+lfUN2fwv8A3gTeA14gqBzNeo/hJ8BNQR/GLfThn+oZvYgQZv4PQSdsn8m6OiEoAP662GzwBeaefk8gg7EzcAjwLfM7KmoZbeio8f+FPDd8Jz5JkEyTmULsCMs726CTt7lrR0rbK+fS1Ar2E5wHuzXFxP2h11FcO4+qqSRRqGfEzRPlQAvEdRAGmWFx94cHv9dYTydysyeAb5B0EdQRFBLujDlizpeZgXw3rCczQSfwQ8JOtOh7Z9hUzcC5ysYpZV8vdHtBJ3kXabZCcIRCM5FpWCI4y1mNqHVnZ1zbSLpVIImqIlha0SX4DUKl5KkvpLmhk0XYwiaHh7JdFzO9TSScgmaiG/rSkkCPFG41gn4DkHTx2sE49u/mdGInOthwr6PnQSDAn6e0WCa4U1PzjnnUvIahXPOuZS6/WRVzSksLLSJEydmOgznnOs2Fi5cWGJmw5rb1iMTxcSJE3n11VczHYZzznUbklqcHsebnpxzzqXkicI551xKniicc86l5InCOedcSp4onHPOpZTRRCHpTAVLDK5KWochebsULM+4SsESiTMyEadzzvVmGUsUkrKBXwLvBw4D5kk6rMlu7yeYXXUqwQyXv05rkM455zJ6HcUsYJWZrQaQdB9wDsH6zI3OAe4Ip0J+SdIgSaPMrCiOgG56ZiV19V1qLi4Ajp88lNlTUi2A5pxz8clkohjD/ksFbgSOj7DPGII56fcj6SqCWgfjx49vV0C3PPcOe2rjWHel/czg0GXF/O26UzIdinOul8pkomhu6cemMxRG2Sd40uxW4FaAmTNntmumw6XfPbM9L4vVZ+59jcWbyjIdhnOuF8tkZ/ZG9l9/eSwHrukcZZ8eLZGTRXUXq+U453qXTCaKV4CpkiZJ6kOw5OBjTfZ5DLg0HP10AlAWV/9EV5XIzaK6ruv1mzjneo+MNT2ZWZ2ka4G/A9nA783sLUlXh9tvIVifeS7BetO72X8d6l4hkZPticI5l1EZnT3WzJ4gSAbJz92SdN+A/053XF1JIieL6jpvenLOZY5fmd3FJXKyqa036ht8JULnXGZ4oujiErnBR1TjzU/OuQzxRNHFJXKCj8ibn5xzmeKJootL5GQDeIe2cy5jPFF0cXtrFLWeKJxzmeGJootr7KPwpifnXKZ4oujivOnJOZdpnii6OO/Mds5lmieKLs77KJxzmeaJootL5HrTk3Mus1qdwkPSTOAUYDSwB1gCPG1m22OOzeFNT865zGuxRiHpckmLgK8AfYEVQDFwMvCUpNsltW+FIBdZY6Ko8qYn51yGpKpR9Admm9me5jZKOppgLev1McTlQvuanrxG4ZzLjBYThZn9sqVtko4zs1fiCckl29f05DUK51xmRJ5mXNJhBIsLzQPKgJlxBeX28VFPzrlMS5koJE0gSAzzgDpgAjDTzNbGH5qD5AvuvOnJOZcZqTqzXyBYVCgXON/MjgUqPEmkV262kLzpyTmXOamuo9gG5AMjgGHhc756TppJIs+XQ3XOZVCLicLMzgGmA4uA70haAwyWNCtdwblAIjeL6lpvenLOZUbKPgozKwN+D/xe0nDgv4CfSxpnZuPSEaBrXDfbaxTOucyIPOrJzIqBXwC/CDu5XZokvOnJORdqaDDK9tRSWlnNtooaSiurKd1VQ+muagz4/HundXqZLSYKSbcCvzCzxc1sLpF0BVBtZnd3elRuP0GNwpuenOupzIydu2vZtquabRX7biW7qtm2q5qSXTWUhI9LK2uobziwu1iCCUP6pTdRAL8CviFpOsH8TtuAPIKrsQsImqQ8SaRB0EfhNQrnupv6BqO0spri8mq2llextbya4ooqiiuC57aF90t2VVNbf+A//z7ZWRQO6ENhfoKRA/M4YkwBhQMSDB2QoHBAH4aF94cO6MPgfn3IzlIsv0eqK7NfBy6QNIDg4rpRBJMCLjOzFbFE45rlTU/OdT27quvYUlYV3Mqr2FpeRVHZniAZhElh267qZr/9D+nfh+H5CYblJzho+ACG5+cxLHw8bMC+nwV9c5Di+effFq32UZjZLuDZ+ENxLfGmJ+fSa09NPZvL9rB55x6KdlaxuWwPW8qq2FxWxZay4LmK6roDXjeoXy4j8vMYMTCPg0fkM6IgjxEFCYYX5DE8P8GIgjwKByTok9O9VnhI1Ucxn5avmzAzOz2ekFxTiZwsdjVzUjrn2s7M2LG7lo07drNpxx427dzDxh1BUgiSQxXbK2sOeF3hgASjB+UxcWh/Tpw8lFGD+jKyII+RA/MYWZDHiII8+vbJzsBvFL9UNYovNPPcCcCXCKYbd2mSyMn2Pgrn2qBsdy0bduxmw/bdbNixm4079rBhe/Bz44497GlyXdKARA5jBvVl9KA8jho7iNGD+jJmUF9GDcxj9KC+jCjI63a1gM6Uqo9iYeN9Se8CvgEkgKvN7G8dKVTSEOB+YCKwFrjAzHY02WcccAcwEmgAbjWzGztSbneVyPWmJ+eSNTQYReVVrCupZP323azbvpv1pbtZt72S9aW7Ka/avwaen5fDuMH9mFTYn1OmDmPs4L6MGdyXsYP7MnZQvy7TF9BVtTYp4PsIEkQV8H0zm99J5V4PPGNmN0i6Pnz85Sb71AGfN7NFkvKBhZKeMrOlnRRDt+EX3LneqDEZrNlWyZrSStaVVLK2dDdrS4PkUJP0N5GbLcYO7se4If04Ztxgxg/px7ghfYPnBvdjYL/cDP4m3V+qPopXCOZ4+hHwYvjcjMbtZraoA+WeA8wJ799O0Fm+X6IwsyKgKLxfIWkZMAbohYnCRz25nquiqpZ3tlXyTvEu1pRUsrpkF6u3VbK2tHK/lR0TOVlMHNqfg4b15/RDhjNhaH8mDg2Sw+hBfWMbGupS1ygqgV3A+cB5QPKnYMC7O1DuiDARYGZF4fQgLZI0ETgGWJBin6uAqwDGj+9ZK7QmcnyuJ9e9mRklu2pYWVzBquJdrCrexTvbgp9by6v37pedJcYP6cfkwv6cPKWQScP6M6kwuI3IzyPLk0FGpOqjmNORA0t6mqB/oamvtfE4A4CHgM+aWXlL+5nZrcCtADNnzuxRs9wGfRReo3Ddw47KGpZvqWBlcQVvb63g7a27WLm1gh27a/fuMyCRw0HDBzB7SiFThg9gyrABHDR8AOOH9CM3u/d2GndVked6aiszO6OlbZK2ShoV1iZG0cIoKkm5BEnibjN7OKZQu7xETjZ1DUZdfQM5/kfkuoja+gZWFe9i+ZZylhdVsHxLBcu3lO9XQ8hP5DB1xADed/hIpo7I5+ARA5g6PJ8RBQnvPO5GYksUrXgMuAy4Ifz5aNMdFJxFvyO4Evyn6Q2va2lcDrXGE4XLkPKqWpZtLmdpUTlLw58rt+6ipj6o6fbJzmLK8AHMPqiQaSPzmTYyn0NGFnhC6CEylShuAB6Q9HFgPfARAEmjgdvMbC4wG/gosFjS6+HrvmpmT2Qg3oxqTBRVtQ3065PhYFyPV7anlrc2lbE4vC3ZVMba0t17txcO6MNhowdyytRhHDoqn8NGFTCxsL83GfVgbU4UYVPRdjOrbnXnFphZKXDAld1mthmYG97/N/t3oPdaiVxfN9vFo6q2nqVF5by+fievb9jJmxt37pcUxgzqyxFjCjj/2LEcPmYgh48qYFi+1xJ6m/bUKO4EDpL0kJk1d/W262SNNQq/Ott1hJmxYfseFq7fzmthYlhWVL531tKRBXkcOXYg5x87luljB3HE6AKGDkhkOGrXFbQ5UZjZGWH/wWExxOOakchprFF4onDRVdfVs2RTGQvX7QhvOynZFTQE9O+TzZFjB/Hxkydz9LhBHD1uECMH5mU4YtdVRUoUkrKBEcn7m9lbcQXl9re3RuFNTy6F3TV1LFq3k5fXlPLSmu28vmHn3quXJwztx6lTC5kxYTDHThjMwSPy/QI1F1mriULSp4FvAVsJ5lyC4IK7I2OMyyVJ5DYmCq9RuH321NTzytrtvPBOKQvWlLJ4Yxl1DUaW4IgxA7n0hAnMnDiEYycMZli+NyG59otSo7gOmBZ2QLsM2Nv05H0UvVptfQNvbNjJf1aV8p93Snht/Q5q643cbHHU2EFcdepkZk0KEkN+ns9t5DpPlESxASiLOxDXsrxcb3rqrdaX7ua5t4t57u1tvPhOKZU19Uhw+OgCrpg9iZOmFHLcxMH065Opke6uN4hydq0GnpX0V2DvkNjefhFcOnlndu+xp6aeF1eX8PzbJTz39jbWlFQCMG5IX849ZgynTC3khMlDGeQX1Lg0ipIo1oe3PuHNpZl3ZvdsxeVVPLO8mKeXbuXfq0qormsgLzeLEycP5bITJ/CuacOZOLSfX7vgMibKmtnfAQjXhLBwDW2XRns7s72PokcwM1ZsreAfb23lmWVbeWNj0LI7ZlBf5s0az7sPGc6sSUPIy+2Zy2q67ifKqKcjCC6yGxI+LgEu9eGx6eNNT92fmfHW5nKeWFzEk0u2sDpsUjp63CC+8N6DOeOwEUwbke+1BtclRWl6uhX4XOPqdpLmAL8FToovLJfMm566JzPjzY1lPLG4iCeWFLFh+x6ys8QJk4dwxcmTeO/hIxie7xe5ua4vSqLon7wEqpk9K6l/jDG5JnwKj+5lTUklf35tE4+9sZk1JZXkZInZUwq59rQpvOewkQzp7119rnuJNOpJ0jcImp8ALgHWxBeSayonO4vsLHnTUxe2raKax9/czJ9f38wbG3YiwQmThvLJUydz5hEjfZSS69aiJIorgO8ADxPM5vo88LE4g3IHSuRkedNTF1NX38D8Fdu4/5UNzF9RTH2DcdioAr469xA+cNRoRg3sm+kQnesUUUY97QA+k4ZYXApBovAaRVewpqSSB17dwEMLN1JcUc2w/ARXnjKZ82aMYeqI/EyH51ynazFRSPq5mX1W0l8I5nbaj5l9MNbI3H4SOdneR5FBtfUNPLlkC3e9tI4Fa7aTnSVOmzaMC2aO47RDhvuiPa5HS1WjaOyT+HE6AnGpJXK96SkTiiuquHfBBu5esI7iimomDO3Hl86cxvkzxjK8wEcsud6hxURhZgvDu0eb2Y3J2yRdBzwXZ2Buf970lD5mxmsbdnLHC2v56+IiauuNOdOG8cMTJ/Kug4eR5dNzu14mSmf2ZcCNTZ67vJnnXIwSOdmeKGLW0GA8vWwrv37uHV5bv5P8RA6XnDCBS0+cyKRCHxHueq9UfRTzgIuASZIeS9qUD/iU42nmo57iU1PXwKOvb+I3z69mVfEuxg3py3fPOZzzZoylf8JnZXUu1V/BC0ARUAj8JOn5CuDNOINyB0rkZnlndierrK7j3pfX87t/r6GorIpDRxVw07xjmHvESHK8c9q5vVL1UawD1km6GNhsZlUAkvoCY4G1aYnQAUHTU/meukyH0SPsqannzpfW8utn32HH7lpOmDyEG847klOnFvpcS841I0q9+gH2n9epHngQOC6WiFyzEjlZVNV601NHVNfVc/8rG7j5n6sorqjm1IOH8dkzpjJj/OBMh+ZclxYlUeSYWU3jAzOrkeTzEaSZj3pqv9r6Bh5etJGbnlnFpp17mDVpCDdfNINZk4ZkOjTnuoUoiWKbpA+a2WMAks4BSuINyzUVjHryGkVbmBnPLCvmf59YxuqSSo4aN4gbzpvOyVO8icm5toiSKK4G7pZ0M8FcTxuAS2ONyh0guODOaxRRvb21gv95fCn/WlnCQcP689tLZ3LGocM9QTjXDlHmenoHOEHSAEBmVhF/WK6pRI6PeopiR2UNP3v6be5esJ7+fbL51gcO45ITJvgUG851QJQV7hLAecBEIKfxG5mZfbe9hUoaAtwfHnMtcEE4+WBz+2YDrwKbzOzs9pbZ3TU2PZmZfytuRl19A3e+tI6fPfU2lTX1XHz8eP7fGQcz2Nd+cK7DojQ9PQqUAQuB6k4q93rgGTO7QdL14eMvt7DvdcAyoKCTyu6W8nKzaDCoazBysz1RJHtrcxnXP7SYxZvKOGVqId84+zAO9llcnes0URLFWDM7s5PLPQeYE96/HXiWZhKFpLHAWcD3gc91cgzdSvK62d6MEqiqreemZ1bym+dXM7hfLjdfdAxnTR/lNS7nOlmURPGCpOlmtrgTyx1hZkUAZlYkaXgL+/0c+BLBtCG9WiK3cTnUegb4tBIsWF3KVx5ezOqSSj5y7Fi+dtahvoqcczGJ8h/nZOBySWsImp4EmJkdmepFkp4GRjaz6WtRApN0NlBsZgslzYmw/1XAVQDjx4+PUkS3snfd7F4+8qmiqpYf/G059yxYz7ghfbnr48dz8tTCTIflXI8WJVG8vz0HNrMzWtomaaukUWFtYhRQ3Mxus4EPSpoL5AEFku4ys0taKO9W4FaAmTNnHrDQUneX3PTUW72xYSefue81NmzfzSdOnsTn3nsw/fp47cq5uEVp7LYWbh3xGMH05YQ/Hz2gULOvmNlYM5sIXAj8s6Uk0Rvsq1H0vovuGhqMW557h/N+/QJ19cb9nzyRr599mCcJ59Ikyl/aXwkSgwi+2U8CVgCHd6DcG4AHJH0cWA98BEDSaOA2M5vbgWP3SPv6KHpXjaK4vIrPP/gG/1pZwtzpI/nBh45kYL/cTIflXK8S5YK76cmPJc0APtmRQs2sFDi9mec3AwckCTN7lmBkVK/VG5ue5i8v5gsPvkFlTR03fHg6/3XcOB/R5FwGtLnubmaLJPnMsWnWm5qe6huMH/19Bbc89w6HjMzn/otOYMrwXj/wzbmMiXJldvL1C1nADGBbbBG5Zu2tUfTwpqeKqlquu+91/rm8mIuOH883zz6MvNzsTIflXK8WpUaR/FWujqDP4qF4wnEt2dtH0YObntaX7ubjt7/C6pJK/ufcI/joCRMyHZJzjtRrZt9pZh8FdprZjWmMyTWjpzc9vfhOKZ+6eyENBndeMYuTpvi1Ec51FalqFMdKmgBcIekOglFPe5nZ9lgjc/vpyZ3Zdy9Yx7cefYuJhf257dKZTCzsn+mQnHNJUiWKW4AngckEEwImJwoLn3dpsrdG0YOWQ21oMP7nr0v5w3/Wctq0Ydw47xgK8nzoq3NdTYuJwsxuAm6S9GszuyaNMblm9LQ+irr6Br780GIeWrSRK2ZP4mtnHUp2lg99da4rinIdhSeJLqBPds9JFDV1DXz2/td4YvEWPveeg/n0u6f49RHOdWE+B0I3kZOdRU6Wun1ndlVtPdfctZD5K7bx9bMO5ROneAumc12dJ4puJJGTRVU3vo5iV3Udn7j9FRas2c7/fmg6Fx3f82b5da4n8kTRjSRys7ttjaJsdy2X/eFlFm8q42cXHM25x4zJdEjOuYiiXJldwYGzxZYRrGP9eTNbHUdg7kCJnKxueWV22Z5a5v32JVYV7+JXF8/gfYc3t0yJc66rilKj+CmwGbiHYIjshQQLEq0Afs++JU1dzBI5Wd2uM7uqtp4r73iVlcUV/PbSmcyZ1tJihs65rirKehRnmtlvzKzCzMrDBYLmmtn9wOCY43NJEjndq+mpvsH47H2v8/Ka7fz4I0d5knCum4qSKBokXSApK7xdkLStx60k15UlcrtPjcLM+NZjS3jyrS18/axDOedo75NwrruKkiguBj5KsFzp1vD+JZL6AtfGGJtrojv1Udz8z1Xc9dJ6PnnqZB8C61w3F+WCu9XAB1rY/O/ODcelkpebTWV1XabDaNV9L6/nJ0+9zYePGcOXzzwk0+E45zooyqinYcCVwMTk/c3sivjCcs1J5GSxvbJr1yieWrqVrz6ymHcdPIwfnn8kWT4th3PdXpRRT48C/wKeBrpPT2oPFHRmd91EsWRTGdfes4jpYwbyq4tnkJsdpWXTOdfVRUkU/czsy7FH4loVDI/tmrm6bHct19y9kCH9+/D7y4+jf8Kv5XSup4jyle9xSXNjj8S1KpHbNTuzzYwv/OkNinZWcfNFMxg6IJHpkJxznShKoriOIFnskVQuqUJSedyBuQN11aan2/61hqeWbuUrcw/l2Al+aY1zPU2UUU/5re3j0qMrNj29unY7Nzy5nPcfMZIrZk/MdDjOuRikWjP7EDNbLmlGc9vNbFF8YbnmNE7hYWZdYv2G0l3VXHvPa4wd3Jcfnn9kl4jJOdf5UtUoPgdcBfykmW0GvDuWiFyLErnZmEFtvdEnJ7P/lOsbjM/e/zrbd9fwyKdO8iVMnevBUi2FelX487T0heNS2btudl09fXIyO/T0F/9cyb9WlvCDD0/n8NEDMxqLcy5eUS64ywM+BZxMUJP4F3CLmVXFHJtrYl+iaCCTHUcvvFPCjc+s5MPHjOHC48ZlMBLnXDpEGex+B1AB/CJ8PA+4E/hIXEG55iVysoHMrptdVVvPVx5ezIQh/fjeh47wfgnneoEoiWKamR2V9Hi+pDc6UqikIcD9BNOCrAUuMLMdzew3CLgNOIKgNnOFmb3YkbK7s0RuWKOozdzIp5ueWcm60t3c84nj6dfHL6pzrjeI0tD9mqQTGh9IOh74TwfLvR54xsymAs+Ej5tzI/CkmR0CHAUs62C53Vpy01MmLN9Szq3Pr+a8GWM5aUphRmJwzqVfquGxiwm+xecCl0paHz6eACztYLnnsG9lvNuBZ4H9pgmRVACcClwOYGY1QE0Hy+3WMtn01NBgfOXhxeTn5fC1sw5Ne/nOucxJ1XZwdozljjCzIgAzK5LU3NJnk4FtwB8kHQUsBK4zs8rmDijpKoLhvIwfPz6eqDNsb40iA01Pdy9Yx2vrd/LTC45iSP8+aS/fOZc5qZqedpjZOoKO7OZuKUl6WtKSZm7nRIwtB5gB/NrMjgEqabmJCjO71cxmmtnMYcOGRSyie2nso6hKc41ia3kV//fkCmZPGcqHjvGV6pzrbVLVKO4hqFUsJGhySh7eYgTf+FtkZme0tE3SVkmjwtrEKILV85raCGw0swXh4z+RIlH0BnubntJco/j2Y29RU9/A98+d7qOcnOuFWqxRmNnZCv4rvMvMJpvZpKRbR9e2fAy4LLx/GcGaF03L3wJskDQtfOp0Ot430q1lojP7qaVb+duSLXzm9KlMLOyftnKdc11HylFPZmbAIzGUewPwHkkrgfeEj5E0WtITSft9Grhb0pvA0cD/xhBLt5Huzuxd1XV889ElTBuRz1Wn+rrXzvVWUQbCvyTpODN7pbMKNbNSghpC0+c3A3OTHr8OzOyscru7vddRpGkG2Ruffpst5cEaE75anXO9V5REcRrwSUnrCDqURVDZODLWyNwB9o16ir9GsbW8ittfXMeHjxnra0w418tFSRTvjz0KF0k6m55+NX8VDQ3GdadPjb0s51zXFqU9YRSw3czWhcNltwMj4w3LNSd59tg4bd65h3tf3sBHZo5l/NB+sZblnOv6oiSKXwO7kh5Xhs+5NMvKEn2ys2KvUfxy/ioM479PmxJrOc657iFKolA4+gkAM2sgWpOVi0EiJyvWPooN23fzwKsbuGDmOMYO9tqEcy5aolgt6TOScsPbdcDquANzzUvkxrtu9i/nr0LIaxPOub2iJIqrgZOATQRXSx9POKeSS79ETnZsTU/rSit5cOFG5s0ax+hBfWMpwznX/bTahGRmxcCFaYjFRZDIia+P4hf/XEV2lviU1yacc0larVFI+j9JBWGz0zOSSiRdko7g3IH65GTFMtfTmpJKHl60kUuOn8CIgrxOP75zrvuK0vT0XjMrJ5ggcCNwMPDFWKNyLUrkxtP0dNMzK+mTk8XVc3yqDufc/qIkitzw51zgXjPbHmM8rhVB01Pn1ihWFVfw6OubuPTEiQzP99qEc25/URLFXyQtJ5hz6RlJw4CqeMNyLYmjj+KmZ1aRl5vNJ33iP+dcM1pNFGZ2PXAiMNPMaoHdBEuZugxI5GR36nUUxRVVPLG4iItmjWfogESnHdc513NE6czuB/w3+67GHo3P6JoxnX0dxUMLN1HXYMw7vmcuH+uc67goTU9/AGoIrqWAoEP7e7FF5FLqzKYnM+P+V9Yza9IQDho2oFOO6ZzreaIkioPM7P+AWgAz28P+y6K6NOrMC+5eXF3K2tLdzJs1rlOO55zrmaIkihpJfQnWyUbSQUB1rFG5FiU68TqK+17eQEFeDu8/YlSnHM851zNFmdzvW8CTwDhJdwOzgcvjDMq1LOij6HiNYkdlDU8u2cK8WePIy83uhMiccz1VlCk8npK0CDiBoMnpOjMriT0y16zGpiczQ2p/C+DDr22ipr6BC2d5J7ZzLrUWE4WkGU2eKgp/jpc03swWxReWa8m+xYsa2l0TaOzEPmrcIA4dVdCZ4TnneqBUNYqfhD/zCIbDvkFQozgSWACcHG9orjmdkSgWrd/J21t3ccOHp3dmaM65HqrFzmwzO83MTgPWATPMbKaZHQscA6xKV4Buf4ncxnWz29+hfd/L6+nfJ5sPHDW6s8JyzvVgUUY9HWJmixsfmNkS4OjYInIp7a1RtPPq7IqqWh5/s4gPHj2a/glfqNA517oo/ymWSboNuItgiOwlwLJYo3ItSm56ao9HX9/Mntp6LjzOO7Gdc9FESRQfA64BrgsfP8++6TxcmiVyOtb0dN8r6zl0VAFHjh3YmWE553qwKMNjq4CfhTeXYYnc9tcolmwqY8mmcr7zwcM7NLTWOde7ROmjcF1IXmONoh19FPe9sp5EThbnHj2ms8NyzvVgGUkUkoZIekrSyvDn4Bb2+3+S3pK0RNK9knr9qjr7ahRta3qqqq3n0dc2c9b0UQzsl9v6C5xzLtRiopB0Z/jzupb26YDrgWfMbCrwTPi4afljgM8QrINxBJANXBhDLN1KezuzF6zZTkV1HR842ofEOufaJlWN4lhJE4ArJA0OawF7bx0s9xzg9vD+7cC5LeyXA/SVlAP0AzZ3sNxub19ndtsSxfzlxSRysjhx8tA4wnLO9WCpOrNvIZgMcDKwkP2nFrfw+fYaYWZFAGZWJGl40x3MbJOkHwPrgT3AP8zsHy0dUNJVwFUA48f33KGf+66jaFvT03Nvb+Okg4b6BIDOuTZLdWX2TWZ2KPB7M5tsZpOSbq0mCUlPh30LTW+RllEN+y3OASYRrKrXX9IlKeK9Nbx6fOawYcOiFNEttWfU05qSStaUVDJn2gH52DnnWhVleOw1ko4CTgmfet7M3ozwujNa2iZpq6RRYW1iFFDczG5nAGvMbFv4mocJVtm7q7Wye7L2ND09uyJ4e0/zROGca4coa2Z/BrgbGB7e7pb06Q6W+xhwWXj/MuDRZvZZD5wgqZ+CQf+n41eEJ3VmR296enbFNiYP68/4of3iCss514NFGR77CeB4M/ummX2TYF2KKztY7g3AeyStBN4TPkbSaElPAJjZAuBPwCJgcRjrrR0st9tr61xPe2rqeXF1KXMO9tqEc659okzhISD562s9HVwz28xKCWoITZ/fDMxNevwtghX2XEgSfXKir3L30upSauoaOO2Qnttv45yLV5RE8QdggaRHwsfnAr+LLSLXqkROVuSmp/kriumbm82sSR0d0eyc662idGb/VNKzBAsVCfiYmb0Wd2CuZY3LobbGzJi/opjZU4bu7QR3zrm2irQgQbjsqS992kUkcrIi9VGsLqlkw/Y9fPLUg9IQlXOup/JJAbuhRG60pqf5y4NhsXOmef+Ec679PFF0Q1Gbnp57extThw9g7GAfFuuca79IiULSBElnhPf7SsqPNyyXSiIni6pWpvCorK5jwertnHaID4t1znVMlAvuriS4nuE34VNjgT/HGJNrRSLC8NgX3imlpr6BOQd7s5NzrmOi1Cj+G5gNlAOY2UqCK7RdhiRyW296enZFMf37ZDNzog+Ldc51TJREUW1mNY0Pwim/Lb6QXGuCUU8tNz2ZGc+u2MbsKYX0yfFuKOdcx0T5L/KcpK8SrAvxHuBB4C/xhuVSSeRkUZOiRrGqeBebdu7x/gnnXKeIkiiuB7YRzLf0SeAJ4OtxBuVSa23U0/wVPizWOdd5olyZ3QD8FvhtuLLdWDPzpqcMau06ivnLt3HIyHxGDeybxqiccz1VlFFPz0oqCJPE68AfJP009shci1JdmV1RVcur67b7IkXOuU4TpelpoJmVAx8G/mBmxxIsKuQyJC/FqKdX1+6gtt449eDCNEflnOupoiSKnHAVuguAx2OOx0WQyMmipr6BhoYDWwDf2lwGwPQxA9MdlnOuh4qSKL4L/B1YZWavSJoMrIw3LJdK40ywNfUH1iqWFVUwfkg/8vNy0x2Wc66HitKZ/SDBkNjGx6uB8+IMyqWWvMpdXu7+04cvLSrnsFEFmQjLOddDtZooJOUBHwcOB/IanzezK2KMy6WQyE1eN3tfzaGyuo61pZWce/SYDEXmnOuJojQ93QmMBN4HPEcw11NFnEG51Bqbnpp2aC/fUoEZHDbaaxTOuc4TJVFMMbNvAJVmdjtwFjA93rBcKnubnppcS7GsqByAQ0f55L7Ouc4TJVHUhj93SjoCGAhMjC0i16rGRFHV5FqKpUXlFOTlMGaQX2jnnOs8UZZCvVXSYOAbwGPAAOCbsUblUkrkNt/0tKyonENHFSApE2E553qoKKOebgvvPgdMjjccF0VzTU/1DcbyogounDUuU2E553qoKKOeEgTDYScm729m340vLJfKvkSxr0axrrSSPbX1HOpDY51znSxK09OjQBmwEKiONxwXxd5RT0l9FEvDjmy/hsI519miJIqxZnZm7JG4yPa/jiKwrKicnCwxZfiATIXlnOuhoox6ekGSD4ftQpprelq6uZyDhg044Ept55zrqBYThaTFkt4ETgYWSVoh6c2k59tN0kckvSWpQdLMFPudGZa7StL1HSmzJ2nugrtlRRV+oZ1zLhapmp7OjrHcJQTTlv+mpR0kZQO/BN4DbARekfSYmS2NMa5uYW/TU7hu9vbKGraUV/mFds65WKRKFFuBq4EpBMug/s7M6jqjUDNbBrQ23n8WwYy1q8N97wPOATxRNGl6Wra3I9unFnfOdb5UfRS3AzMJksT7gZ+kJaJ9xgAbkh5vDJ9rlqSrJL0q6dVt27bFHlwm9cnev0axdLNP3eGci0+qGsVhZjYdQNLvgJfbcmBJTxNMJtjU18zs0SiHaOa5FtfqNrNbgVsBZs6c2aPX9JYULIeaVKMYUZBg6IBEhiNzzvVEqRJF4xxPmFldW6eFMLOOLpe6EUi+zHgssLmDx+wxkhPF0nDqDueci0OqRHGUpPLwvoC+4WMBZmZx/2d6BZgqaRKwCbgQuCjmMruNRG421XX1VNfVs6p4F+8+ZHimQ3LO9VAt9lGYWbaZFYS3fDPLSbrfoSQh6UOSNgInAn+V9Pfw+dGSngjLrwOuJViGdRnwgJm91ZFye5JEThbVtQ2sKt5FXYN5jcI5F5soV2Z3OjN7BHikmec3A3OTHj8BPJHG0LqNxqanxo5sv4bCOReXKFdmuy4oL2x6WlZUQV5uFhOH9s90SM65HsoTRTe1t0ZRVMYhIwvIzvI1KJxz8fBE0U0lcrKpqg1qFN4/4ZyLkyeKbiqRm8Wakt2U7an1/gnnXKw8UXRTiZwsSnYFy4Mc5ldkO+di5Imim2qcQVaCaSO9RuGci48nim6qcWLACUP6MSCRkVHOzrlewhNFN9U41bh3ZDvn4uaJoptqbHryNbKdc3HzRNFNNTY9eY3CORc3TxTd1N4ahQ+Ndc7FzHtBu6mzjhxJdhaMGpiX6VCccz2cJ4puasrwfK59t18/4ZyLnzc9OeecS8kThXPOuZQ8UTjnnEvJE4VzzrmUPFE455xLyROFc865lDxROOecS8kThXPOuZRkZpmOodNJ2gasa+fLC4GSTgyns3hcbeNxtY3H1TY9Ma4JZjasuQ09MlF0hKRXzWxmpuNoyuNqG4+rbTyutultcXnTk3POuZQ8UTjnnEvJE8WBbs10AC3wuNrG42obj6ttelVc3kfhnHMuJa9ROOecS8kThXPOuZR6TaKQdKakFZJWSbq+me2SdFO4/U1JM6K+Nua4Lg7jeVPSC5KOStq2VtJiSa9LejXNcc2RVBaW/bqkb0Z9bcxxfTEppiWS6iUNCbfF+X79XlKxpCUtbM/U+dVaXJk6v1qLK1PnV2txZer8GidpvqRlkt6SdF0z+8R3jplZj78B2cA7wGSgD/AGcFiTfeYCfwMEnAAsiPramOM6CRgc3n9/Y1zh47VAYYberznA4+15bZxxNdn/A8A/436/wmOfCswAlrSwPe3nV8S40n5+RYwr7edXlLgyeH6NAmaE9/OBt9P5P6y31ChmAavMbLWZ1QD3Aec02ecc4A4LvAQMkjQq4mtji8vMXjCzHeHDl4CxnVR2h+KK6bWdfex5wL2dVHZKZvY8sD3FLpk4v1qNK0PnV5T3qyUZfb+aSOf5VWRmi8L7FcAyYEyT3WI7x3pLohgDbEh6vJED3+SW9ony2jjjSvZxgm8MjQz4h6SFkq7qpJjaEteJkt6Q9DdJh7fxtXHGhaR+wJnAQ0lPx/V+RZGJ86ut0nV+RZXu8yuyTJ5fkiYCxwALmmyK7RzLaXOU3ZOaea7puOCW9ony2vaKfGxJpxH8IZ+c9PRsM9ssaTjwlKTl4TeidMS1iGBumF2S5gJ/BqZGfG2ccTX6APAfM0v+dhjX+xVFJs6vyNJ8fkWRifOrLTJyfkkaQJCcPmtm5U03N/OSTjnHekuNYiMwLunxWGBzxH2ivDbOuJB0JHAbcI6ZlTY+b2abw5/FwCMEVcy0xGVm5Wa2K7z/BJArqTDKa+OMK8mFNGkWiPH9iiIT51ckGTi/WpWh86st0n5+ScolSBJ3m9nDzewS3zkWR8dLV7sR1JxWA5PY15lzeJN9zmL/jqCXo7425rjGA6uAk5o83x/IT7r/AnBmGuMayb4LNmcB68P3LqPvV7jfQIJ25v7peL+SyphIy52zaT+/IsaV9vMrYlxpP7+ixJWp8yv83e8Afp5in9jOsV7R9GRmdZKuBf5OMALg92b2lqSrw+23AE8QjBpYBewGPpbqtWmM65vAUOBXkgDqLJgdcgTwSPhcDnCPmT2ZxrjOB66RVAfsAS604KzM9PsF8CHgH2ZWmfTy2N4vAEn3EozUKZS0EfgWkJsUV9rPr4hxpf38ihhX2s+viHFBBs4vYDbwUWCxpNfD575KkOhjP8d8Cg/nnHMp9ZY+Cuecc+3kicI551xKniicc86l5InCOedcSp4onHPOpeSJwvVakj4kySQd0onHnCPp8fD+Bxtn6pR0rqTD2nG8ZyXNbONrciSVSPpBW8tzrjmeKFxvNg/4N8FVtp3OzB4zsxvCh+cCbU4U7fReYAVwgcKB/c51hCcK1yuFc+bMJpjf6MKk5+dIek7SA5LelnSDgjUbXg7XGjgo3O+Pkm6R9K9wv7ObKeNySTdLOgn4IPCjcK2Cg5JrCpIKJa0N7/eVdF+4nsD9QN+k471X0ouSFkl6MPwdmjMPuJHgauYTOuHtcr2cJwrXW50LPGlmbwPbkxd5AY4CrgOmE1wNe7CZzSKYD+nTSftNBN5FMHXCLZLymivIzF4AHgO+aGZHm9k7KeK6BthtZkcC3weOhSCZAF8HzjCzGcCrwOeavlhSX+B04HGCuYjmpSjLuUg8Ubjeah7BvPyEP5P/ob5iwfz/1QQLvvwjfH4xQXJo9ICZNZjZSoK5dDqjr+NU4C4AM3sTeDN8/gSCpqv/hFM4XAZMaOb1ZwPzzWw3wQRyH5KU3QlxuV6sV8z15FwySUOBdwNHSDKC+W9M0pfCXaqTdm9IetzA/n8zTee/act8OHXs+6LWtCbS3HEEPGVmrdUQ5gGzG5uyCOZxOg14ug2xObcfr1G43uh8gpXAJpjZRDMbB6xh/7UYoviIpKyw32IyQQdySyoIlrBstJawWSmMp9HzwMUAko4Ajgyff4kgAUwJt/WTdHByAZIKwt9hfPh7TQT+G29+ch3kicL1RvMI1gtI9hBwURuPswJ4jmBq56vNrCrFvvcBX5T0WphYfkwwO+oLQGHSfr8GBkh6E/gS8DKAmW0DLgfuDbe9xIFNXR8mWMM5uUb0KPBBSYk2/m7O7eWzxzrXDpL+CDxuZn/KdCzOxc1rFM4551LyGoVzzrmUvEbhnHMuJU8UzjnnUvJE4ZxzLiVPFM4551LyROGccy6l/w/bpoNNY8LQgQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "amp_range = np.linspace(0, 2, 50)\n", + "N_a = ct.describing_function(backlash, amp_range)\n", + "\n", + "plt.figure()\n", + "plt.plot(amp_range, abs(N_a))\n", + "plt.xlabel(\"Amplitude A\")\n", + "plt.ylabel(\"Amplitude of describing function, N(A)\")\n", + "plt.title(\"Describing function for a backlash nonlinearity\")\n", + "\n", + "plt.figure()\n", + "plt.plot(amp_range, np.angle(N_a))\n", + "plt.xlabel(\"Amplitude A\")\n", + "plt.ylabel(\"Phase of describing function, N(A)\")\n", + "plt.title(\"Describing function for a backlash nonlinearity\");" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### User-defined, static nonlinearities\n", + "\n", + "In addition to pre-defined nonlinearies, it is possible to computing describing functions for static nonlinearities. The describing function for any suitable nonlinear function can be computed numerically using the `describing_function` function." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEWCAYAAAB8LwAVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAA1w0lEQVR4nO3dd5wU9f3H8df7ChzlaHIiHaRJRzjRWLBgwd4V7JUfUSKJxlhiiTGJmsQau8ZYIzZQbNjFqCFwdBBBRJSicihNpB18fn/MnK7n7t0c3N5c+Twfj33c7cx8Zz47O7uf/X5n5vuVmeGcc86VlBF3AM4556omTxDOOeeS8gThnHMuKU8QzjnnkvIE4ZxzLilPEM4555LyBFHNSDpV0usJz01S5yjLVnAc3SRNk7RW0kXp2EaK7baT9J2kzDSsey9Jn4TrP6ai11+TSHpV0plxxxGVpA7hZyUrfB5b/JLmSNovjm2Xl/w+iGgkLQJaAEXAFuAj4FHgfjPbGmNcBnQxswWVvN1/AmvM7Ddp3s4i4DwzezOd2wm39RYwzsxuT/e2Koqkswj2z95p3MYfgM5mdlq6tpFukjoAnwHZZlYUczg/qOr71msQ5XOkmeUC7YEbgcuAf1bWxot//VQR7YE5cQdRwbb5NVWx9yay6hp3dVQt97WZ+SPCA1gEHFhi2kBgK9ArfF4X+DvwBfA1cC9QL5zXHHgJWAV8C/wHyAjntQXGAIXAN8Cd4fSzgA+AW8MyfwqnvZ8QgwEXAQuBFcDfEtabbNkRwCfASuAufqxFZgI3h+v4DBgZLp+VZF+8TVCL2gB8B3QF3iX4JUt5tx3OPx+YC6wlqJ31Bx4L9+/6cDu/AzokxgW0AsaF+2cBcH7COv8APE1Q01tL8OWfn+L9/bTEtupGWPezwOPAmsTXnrDM4cC0cP5i4A+lHF+lHR+Xh/EV75tjw+ndw/dgSxjzqnB6lPfiwvC9+CycdnsY4xpgCrBPOH0IsAnYHG5jRsltEPzQvAr4HFge7u/G4bzi9+tMgs/FCuD3peyHh8Nj4+Xw9f4P6JQwf09gMrA6/Ltnwrx3gesJPjNrgdeB5iXiyEoS/1nA+wSf3ZUEx/+hCettTPBD8EtgKcHnMDOc14ng8/BN+NqeAJqU+N64DJgJbASywmkHJtu3wInAlBL75BLg+Vi+9+LYaHV8kCRBhNO/AH4Z/n8bwRdKMyAXeBG4IZx3A0HCyA4f+wAi+GKeQZAEGgA5wN4JB24R8KvwwKpH8g/7O+E22wHzSx74JZZ9CWgSLlsIDAnnjSD48mkDNAXeJEWCCJf/4QOW4nl5tn1i+MHbLdwnnYH2yfY7P/+gTwDuDvdbv3C9g8N5fyD4Aj0s3M83ABOjvscR1r0ZOIbgC7JekvXtB/QO5/ch+NFwTIptJz0+EvZPq3A9JwPrgJbJ9nM53os3CI6Z4h8wpwE7EBxnlwBfATkJr/XxVNsAziFIoDsDDQl+7DxW4v16gOD47UvwRdk9xX54mCBBDgxjeQIYHc5rRvAFfno4b1j4fIeEmD4l+MFSL3x+Y4rjJjH+s8L38nyC4+SXwLKE/f88cB/B53NHYBLwf+G8zsBBBD8o8oD3gNtKHFPTCX4E1kuYdmCyfRuu59vE/UPwI+P4OL73vIlp+y0DmkkSwQH2GzP71szWAn8BhobLbQZaEnzxbTaz/1jw7g8k+PBfambrzGyDmb2fuH4z+4eZFZnZ+hQx3BRu8wuCJDWslHhvNLNV4bLvEHzxAZwE3G5mS8xsJUETWkVLte3zgL+a2WQLLDCzz8tamaS2wN7AZeF+mw48SPAFUux9M3vFzLYQ1Ej6Rgk04rr/a2bPm9nWZO+Nmb1rZrPC+TOBJ4F9U2wy1fGBmT1jZsvC9TxF8Mt/YJTXUYobwmNmfbiNx83sm/A4u5ngi6pbxHWdCtxiZgvN7DvgCmBoiSaV68xsvZnNIPhBVNr7MMbMJllwruAJfjxODgc+MbPHwjifBD4Gjkwo+y8zmx++rqcTypblczN7IDxOHiF4L1pIagEcCvw6/HwuJ/gxNxQgPFbfMLONZlYI3MLP3+M7zGxxKZ/fH5jZRuApgoSNpJ4Eye2liK+jQnmC2H6tCTJ+HlAfmCJplaRVwPhwOgRNPwuA1yUtlHR5OL0twcGZ6sTZ4ggxJC7zOUHCSeWrhP+/J/jFR1gmcT1RtlteqbbdluCXX3m1AoqTcbHPCd6TVNvMidgWHGXdpe4jSbtLekdSoaTVBLW05ikWT3V8IOkMSdMTjqtepawnqp/ELukSSXMlrQ630bgc22hFsG+KfU7wC79FwrRU730ypR2jJX84lPV+l7adpNs0s+/DfxsSnJfKBr5M2P/3EdQkkLSjpNGSlkpaQ9DkWHK/lfez9AhwSvij83Tg6TBxVDpPENtB0m4EB+f7BO2P64GeZtYkfDQ2s4YAZrbWzC4xs50JfvFcLGkwwcHTrpQvLYsQStuE/9sR1GrK60uC5qVk64xiHUGCLLZTOcouJmjLTaa0119ce8tNmNaOoLlqe0VZd1nvzb8JmhzbmlljgiYkJVsw1fEhqT1B88xIgqaUJsDshPUkiyHKe/FDOUn7ELSTnwQ0DbexuoxtJFpG8EVarB1B0+jXZZQrr5LbKd5WRbzfqSwmaBJrnvC5bmRmPcP5NxDsnz5m1ojgl3/J97i0/fezeWY2keDcxD7AKQQ131h4gtgGkhpJOgIYTdB+OMuCS10fAG6VVPzrorWkQ8L/j5DUOfxVsIbgxOIWgvbML4EbJTWQlCNpr3KGdKmkpmGzyCiCKmp5PQ2MCmNuQvCFUR7TgeMk1Q/vyzi3HGUfBH4raYACncMvRgi+ZHZOVsjMFgMfAjeE+61PuN0nyhl7utadS1AL2SBpIMGHPalSjo8GBF8iheFyZxPUIIp9DbSRVCdh2nTK917kEnyhFwJZkq4BGpXYRgdJqb4vngR+I6mjpIYETatPlVIr3lavAF0lnSIpS9LJQA/S2PxiZl8SnOy+OfzcZ0jqJKm4GSmX8AIBSa2BS8u5iVT79lHgTqCoRJNzpfIEUT4vSlpL8Kvi9wTtjWcnzL+MoJlgYljdfJMf23G7hM+/A/4L3B22UW8h+MXYmeCE9xKCE5Hl8QLBlSfTCa7+2JZLbx8g+CDMJDgp9go/3vMRxa0Ev3q+JqgiR/4iNbNngD8T/OJeS3BSsFk4+wbgqrB6/9skxYcRtNEuA8YC15rZG1G3XYbtXfcFwB/DY+YagiScSqrj4yOCq8v+S7BvexNcpVPsbYKrs76StCKcVt734jXgVYILHD4nOLGf2CzyTPj3G0lTk5R/iOBX7nsEVwBtILiwokKZ2TfAEQQn0b8huKrtCDNbUWrB7XcGUIfgIo6VBFevtQznXUdwxd1qgs/emHKuO9W+fYzgh0BstQfwG+VcCpIOBe41s5JVeudcmkmqR3DJcH8z+ySuOLwG4YDggJR0WFh1bw1cS/Cr2TlX+X4JTI4zOYDXIFxIUn2C6/53ITjZ/jIwyszWxBqYc7VM2L2MCO6ZmRZrLJ4gnHPOJeNNTM4555Kqfp1HlaJ58+bWoUOHuMNwzrlqY8qUKSvMLC/ZvBqVIDp06EBBQUHcYTjnXLUhKWW3Nt7E5JxzLilPEM4555LyBOGccy4pTxDOOeeS8gThnHMuqbQlCEkPSVouaXaK+ZJ0h6QFkmZK6p8wb4ikeeG8y5OVd845l17prEE8TDDmaiqHEvRg2QUYDtwDICmTYEzaQwm68h0mqUca43TOOZdE2u6DMLP3JHUoZZGjgUfDYRUnSmoiqSVB98oLzGwhgKTR4bIfpSvWO976hKItW9O1eldLdWjegL27NGfH3Jy4Q3Fum8R5o1xrftrn/JJwWrLpu6daiaThBDUQ2rVrt02B3DvhU9ZvjjrsgXNlS+zirHvLRgzq0pxBXfMY0L4pOdmZ8QXmXDnEmSCSDb1opUxPyszuB+4HyM/P36aeBz/6Y2ktYc6V39atxkdfruG9Twr5z/wVPPTBZ9z33kJysjM4rn8b/nhUT7Iy/RoRV7XFmSCW8NNxj9sQjNxVJ8V056qNjAzRq3VjerVuzAX7dWbdxiImLvyG1+Z8xb//9wWbi7Zy0/F9yMhIOkS1c1VCnAliHDAyPMewO7DazL6UVAh0kdSRYDDyoZQylq9z1UGDulkM7t6Cwd1b0LJxPW5/6xNyc7K5+ojuBMNQO1f1pC1BSHoS2A9oLmkJwQhl2QBmdi/BmMeHEYzh/D3h2M5mViRpJME4uZnAQ2Y2J11xOlfZfn1gF9Zs2MxDH3xG43rZjDqwS9whOZdUOq9iGlbGfAMuTDHvFYIE4lyNI4mrD+/B2g1F3PrmfHJzsjhn745xh+Xcz9So7r6dqy4yMsSNx/Xmuw1F/PGlj8jNyeLE/LZlF3SuEvllFM7FJCszg9uH9WOfLs257LmZjJ/9ZdwhOfcTniCci1HdrEzuO30Au7ZrykVPTmf20tVxh+TcDzxBOBez+nWyeOCMfJo2yOaiJ6exbmNR3CE5B3iCcK5KaNagDree3I/PvlnHH8b5RXuuavAE4VwVsWen5ozcvzPPTFnCC9OXxh2Oc54gnKtKRg3uwoD2Tfn92Nl8/s26uMNxtZwnCOeqkKzMDG4f2o8MwUVPTmNTkfcy7OLjCcK5KqZN0/rcdHwfZixZzc1vzIs7HFeLeYJwrgo6tHdLTtm9HfdNWMh78wvjDsfVUp4gnKuirj68B11bNOTip6ez4ruNcYfjaiFPEM5VUfXqZPKPYf1Zs76Ia1/wS19d5fME4VwV1m2nXEYd2IWXZ33Jq7O8Kw5XuTxBOFfFDR+0Mz1bNeLqF+awct2muMNxtYgnCOequOzMDP56Qh9Wfb+J61/6KO5wXC3iCcK5aqBnq8ZcsF8nxkxbytsffx13OK6WSGuCkDRE0jxJCyRdnmR+U0ljJc2UNElSr4R5iyTNkjRdUkE643SuOrjwgM50bdGQK8fMZs2GzXGH42qBtCUISZnAXcChQA9gmKQeJRa7EphuZn2AM4DbS8zf38z6mVl+uuJ0rrqom5XJX0/oy/K1G7jhlblxh+NqgXTWIAYCC8xsoZltAkYDR5dYpgfwFoCZfQx0kNQijTE5V631a9uE8/fZmScnLeb9T1bEHY6r4dKZIFoDixOeLwmnJZoBHAcgaSDQHmgTzjPgdUlTJA1PY5zOVSu/OagrOzdvwOVjZvrYES6t0pkglGSalXh+I9BU0nTgV8A0oPiI38vM+hM0UV0oaVDSjUjDJRVIKigs9C4JXM2Xk53JX0/ow9JV6/n7695Xk0ufdCaIJUDiKOxtgGWJC5jZGjM728z6EZyDyAM+C+ctC/8uB8YSNFn9jJndb2b5Zpafl5dX4S/Cuaoov0MzTtu9PY98uIhZS3yYUpce6UwQk4EukjpKqgMMBcYlLiCpSTgP4DzgPTNbI6mBpNxwmQbAwcDsNMbqXLVz6ZBuNG9YlyvGzqRoi3cL7ipe2hKEmRUBI4HXgLnA02Y2R9IISSPCxboDcyR9TNCUNCqc3gJ4X9IMYBLwspmNT1eszlVHjXKy+cNRPZm9dA0Pf7go7nBcDSSzkqcFqq/8/HwrKPBbJlztYWac+0gBExd+wxsX70vrJvXiDslVM5KmpLqVwO+kdq4ak8R1R/XEDK55fjY16Qefi58nCOequbbN6nPxQV156+PljJ/9VdzhuBrEE4RzNcDZe3WgR8tGXDtujnfD4SqMJwjnaoCszAxuOK43hd9t5O+v+b0RrmJ4gnCuhujbtgln/qIDj038nGlfrIw7HFcDeIJwrga55OCutMjN4cqxs/3eCLfdPEE4V4Pk5mTzh6N6MPdLvzfCbb9ICSIct6GnpJ0leVJxrgo7pOdOHLDLjtzyxnyWrVofdziuGkv5ZS+psaQrJc0CJgL3AU8Dn0t6RtL+lRWkcy664nsjtprxxxd9iFK37UqrDTxL0F33PmbWzcz2DjvFawvcBBwt6dxKidI5Vy5tm9XnosFdGD/nK96a60OUum2TlWqGmR1UyrwCwPu0cK4KO2/vnRk7dSnXvDCHPTs1p16dzLhDctVMuc4nSOok6SpJ3rOqc1VcnawM/nRML5auWs8db38SdziuGiozQUhqKenXkiYBc4BMYFjaI3PObbfdd96BEwe04YH3FjL/67Vxh+OqmdJOUp8v6W1gAtCcYLyGL83sOjObVVkBOue2zxWHdadhTha/HzuLrVu9Mz8XXWk1iLsIagunmNlVZjaTnw8Z6pyr4po1qMOVh3Zn8qKVPDt1SdzhuGqktATRChgN3CJpnqTrgezKCcs5V5FOGNCG3To05YZX5rJy3aa4w3HVRMoEYWYrzOweMxsEDAZWA8slzZX0l0qL0Dm33TIyxJ+O6c3aDUXc+OrHcYfjqolIVzGZ2RIz+7uZDQCOATZGKSdpSFj7WCDp8iTzm0oaK2mmpEmSekUt65wrn2475XLu3h15qmAxBYu+jTscVw2UdpJ672TTzWyemV0nqVHiF3qS8pkE5zEOBXoAwyT1KLHYlcB0M+sDnAHcXo6yzrlyumhwF1o1zuH3Y2ez2Tvzc2UorQZxvKQPJV0j6XBJAyUNknSOpMeAl4DSBsAdCCwws4VmtongfMbRJZbpAbwFYGYfAx0ktYhY1jlXTg3qZvGHo3oy7+u1/OuDz+IOx1VxpZ2D+A1wOPAlcCJwPXAx0AW4z8wGmdnkUtbdmqCrjmJLwmmJZgDHAUgaCLQH2kQsS1huuKQCSQWFhYWlhOOcAzi4504c2H1HbnvzE5Z6Z36uFKWegzCzlWb2gJmdZWaHmNkxZnaFmb0fYd1KtsoSz28EmkqaDvwKmAYURSxbHOP9YR9R+Xl5eRHCcs5de2TQmd914+bEHYqrwlL2xSTpjNIKmtmjZax7CdA24XkbYFmJdawBzg63J+Cz8FG/rLLOuW3Xtll9Rg3uyk3jP+atuV8zuHuLuENyVVDKBAHslmSagCMJmnvKShCTgS6SOgJLgaHAKT9ZmdQE+D48z3Ae8J6ZrZFUZlnn3PY5d++OjJm6xDvzcymVdg7iV8UP4CLgf8C+BGND9C9rxWZWBIwEXgPmAk+b2RxJIySNCBfrDsyR9DHBFUujSiu7ja/ROZeEd+bnyiKz1L1nSMoCzgIuIUgQN5jZvMoJrfzy8/OtoMB7IXeuPC55egYvTF/KK6P2oWuL3LjDcZVM0hQzy082r7T7IC4EPgIGAEPCE9VVNjk457bNlYft4p35uaRKu4rpH0AjYG/gxfBu55mSZkmaWTnhOefSbYeGdbni0F2YvGglz0xZXHYBV2uUdpK6Y6VF4ZyL1YkD2vLclKXc8OrHHNi9BTs0rBt3SK4KKO0k9eelPSozSOdcemVkiD8f24t1G4v48ytz4w7HVRHlGnLUOVdzdWmRy/BBOzNm6lI+/HRF3OG4KsAThHPuB786oAvtmtXnqrGz2Vi0Je5wXMw8QTjnfpCTncn1x/Ri4Yp13PvuwrjDcTErd4KQ9Iike0rr6ts5V33t2zWPI/q05K53F/DZinVxh+NitC01iDuBN4HTKzgW51wVcc0RPaibmcFVz8+itJtpXc1W7gRhZpPN7DkzuywdATnn4rdjoxx+N6QbHyz4huenL407HBeTMhOEpK6SHpD0uqS3ix+VEZxzLj6n7t6eXds14fqX5vLtuk1xh+NiEKUG8QwwFbgKuDTh4ZyrwTIyxA3H9WbN+s38+WW/N6I2Ku1O6mJFZnZP2iNxzlU5u+zUiBH7duLOdxZwXP/W7NW5edwhuUoUpQbxoqQLJLWU1Kz4kfbInHNVwsgDOtOxeQOuHDuLDZv93ojaJEqCOJOgSelDYEr48D61naslcrIz+fOxvfj8m++54y0fN6I2KbOJycy80z7nark9OzXnxAFtuP+9hRzZtxXdWzaKOyRXCaJcxZQt6SJJz4aPkZKyo6xc0hBJ8yQtkHR5kvmNJb0oaYakOZLOTpi3KOxafLokr7E4F7MrD+tO43rZXD5mFlt83IhaIUoT0z0EgwbdHT4GhNNKJSkTuItgKNEewDBJPUosdiHwkZn1BfYDbpZUJ2H+/mbWL9VoR865ytO0QR2uObIHMxav4rH/Loo7HFcJolzFtFv4BV7sbUkzIpQbCCwws4UAkkYDRxOMUlfMgFxJAhoC3wJFkSJ3zlW6o/q2YszUpfzttXkc3HMnWjWpF3dILo2i1CC2SOpU/ETSzkCUSxlaA4nDUy0JpyW6E+gOLANmAaPMbGs4z4DXJU2RNDzVRiQNl1QgqaCwsDBCWM65bSWJPx3Ti60GVz0/27vhqOGiJIhLgXckvStpAvA2cEmEckoyreTRdAgwHWgF9APulFR89msvM+tP0ER1oaRByTZiZvebWb6Z5efl5UUIyzm3Pdo2q89vD+nG2x8vZ9yMZXGH49KozARhZm8BXYCLwkc3M3snwrqXAG0TnrchqCkkOhsYY4EFwGfALuF2l4V/lwNjCZqsnHNVwFl7dqBf2yZc9+JHfPPdxrjDcWmSMkFIOiD8exxwONAZ6AQcHk4ry2Sgi6SO4YnnocC4Est8AQwOt9MC6AYslNRAUm44vQFwMDC7PC/MOZc+mRniryf0Ye2GzfzxpY/KLuCqpdJOUu9L0Jx0ZJJ5BowpbcVmViRpJPAakAk8ZGZzJI0I598LXA88LGkWQZPUZWa2IjzPMTY4d00W8G8zG1++l+acS6euLXIZuX8Xbn1zPkf1bcXg7i3iDslVMJV1kklSRzP7rKxpVUF+fr4VFPgtE85Vlk1FWznyH++zev1m3rh4ELk5kW6RclWIpCmpbiWIcpL6uSTTnt2+kJxzNUGdrAxuOqEPy9du4MZXP447HFfBUjYxSdoF6Ak0LnHOoRGQk+7AnHPVQ7+2TTh374488J/POLJvK/bYeYe4Q3IVpLQaRDfgCKAJwXmI4kd/4Py0R+acqzYuPqgb7ZrV5/LnZnqPrzVIyhqEmb0AvCDpF2b230qMyTlXzdSrk8mNx/fmlAf+x61vzOeKw7rHHZKrAFHOQYyQ1KT4iaSmkh5KX0jOuepoz07NGTawLQ/8ZyHTvlgZdziuAkRJEH3MbFXxEzNbCeyatoicc9XWlYd1Z6dGOVz6rDc11QRREkSGpKbFT8LR5KJ08uecq2Vyc7K58fg+LFj+Hbe96YMLVXdREsTNwIeSrpd0PcHIcn9Nb1jOuepqUNc8hu7Wlvvf+5Tpi1fFHY7bDlH6YnoUOAH4GlgOHGdmj6U7MOdc9XXl4d1p0SiHS5+Z4U1N1ViUGgTAxwRda7wAfCepXfpCcs5Vd43CpqZPln/H7T6OdbUVZcjRXxHUHt4AXgJeDv8651xK+3bN4+T8ttw34VNmeFNTtRSlBjGKoIvvnmbWx8x6m1mfdAfmnKv+fn9E0NT0W29qqpaiJIjFwOp0B+Kcq3ka5WRzw3G9vampmopyuepC4F1JLwM/jAxiZrekLSrnXI2xX7cdOSm/DfdN+JSDerSgf7umZRdyVUKUGsQXBOcf6gC5CQ/nnIvk6iN60LJxPS55egbrN3lTU3VRZg3CzK6rjECcczVXbk42fzuxD6c88D9ufHUu1x3dK+6QXARRrmJ6R9LbJR9RVi5piKR5khZIujzJ/MaSXpQ0Q9IcSWdHLeucq1727NScc/bqyCP//Zz3P1kRdzgugijnIH6b8H8OcDxQVFYhSZnAXcBBwBJgsqRxZpY4gO2FwEdmdqSkPGCepCeALRHKOueqmd8N6caE+cu59NkZjP/1IBrX8xHoqrIod1JPSXh8YGYXA7tHWPdAYIGZLTSzTcBo4OiSqwdyFQw+3RD4liD5RCnrnKtmcrIzueWkfixfu5Hrxs2JOxxXhihNTM0SHs0lHQLsFGHdrQkukS22JJyW6E6gO7AMmAWMMrOtEcsWxzdcUoGkgsLCwghhOefi1LdtE0bu35kx05YyfvaXcYfjShHlKqYpQEH497/AJcC5EcopyTQr8fwQYDrQCugH3CmpUcSywUSz+80s38zy8/LyIoTlnIvbyAM607t1Y64cO5vCtRvLLuBikTJBSDox/Hewme1sZh3NrIuZHWxm70dY9xKgbcLzNgQ1hURnA2MssAD4DNglYlnnXDWVnZnBLSf15buNRVwxZiZmSX//uZiVVoO4Ivz77DauezLQRVJHSXWAocC4Est8AQwGkNSCYBzshRHLOueqsS4tcvndId14c+5ynpq8uOwCrtKVdhXTN5LeATpK+tmXs5kdVdqKzaxI0kjgNSATeMjM5kgaEc6/F7geeFjSLIJmpcvMbAVAsrLlf3nOuarsnL068s685Vz34kcM7NiMnfMaxh2SS6BUVbvwl3t/4DHgvJLzzWxCekMrv/z8fCsoKIg7DOdcOXy1egOH3PYe7Xeoz3O/3JPszKijELiKIGmKmeUnm5fynTCzTWY2EdjTzCaUfKQtWudcrbJT4xxuPK43M5es5rY358cdjksQ5T4Iv3bUOZdWh/ZuyUn5bbj73U+Z9Nm3cYfjQl6Xc85VCdce2ZN2zerzm6ems3r95rjDcXiCcM5VEQ3qZnHbyf34as0GrnlhdtzhOCL0xSTpjiSTVwMFZvZCxYfknKutdm3XlFGDu3DLG/PZv9uOHLNr0g4UXCWJUoPIIbjL+ZPw0QdoBpwr6ba0Reacq5Uu2K8T+e2bcvXzs1n87fdxh1OrRUkQnYEDzOwfZvYP4ECC/pOOBQ5OZ3DOudonKzODW0/uB8Co0dPYvGVrvAHVYlESRGugQcLzBkArM9tCwhCkzjlXUdo2q89fjuvN1C9WcesbfulrXKKMB/FXYLqkdwnudh4E/EVSA+DNNMbmnKvFjuzbig8WrOCeCZ+yZ6fm7N2ledwh1Top76T+yUJSS4IxGgRMMrMq2XGe30ntXM2yftMWjrzzfVav38wrF+1DXm7duEOqcbbpTuokyxUSDOjTWdKgigrOOedSqVcnkztP2ZXV6zdzyTMz2LrVe32tTFEuc70JOBmYAxSfLTLgvTTG5ZxzAOyyUyOuPqIHVz8/mwffX8jwQZ3iDqnWiHIO4higm5n5CWnnXCxO270dH3yygr+On8fAjjvQr22TuEOqFaI0MS0EfGRx51xsJHHT8X1o0SiHi56cxpoN3hVHZYiSIL4nuIrpPkl3FD/SHZhzziVqXD+b24f2Y+mq9VwxZpaPQlcJojQxjcNHc3POVQH5HZpxycFd+ev4eezRsRmn/6JD3CHVaGUmCDN7ZFtXLmkIcDvBqHAPmtmNJeZfCpyaEEt3IM/MvpW0CFgLbAGKUl2G5ZyrXUYM6sTkz77l+pfm0q9tU3q3aRx3SDVWyiYmSU+Hf2dJmlnyUdaKJWUCdwGHAj2AYZJ6JC5jZn8zs35m1o9gDOwJZpbYGfz+4XxPDs45ADIyxM0n9WOHhnW48N9TvWvwNCrtHMSo8O8RwJFJHmUZCCwws4VmtgkYDRxdyvLDgCcjrNc5V8s1a1CHO0/ZlWWr1vO7Z2f4+Yg0KW3I0S/Dv58T9LnUl6An143htLK0BhYnPF8STvsZSfWBIcBziSEAr0uaIml4hO0552qRAe2bcdmQXXhtztf864NFcYdTI5V5FZOk84BJwHHACcBESedEWLeSTEuV5o8EPijRvLSXmfUnaKK6MNXd25KGSyqQVFBY6KOjOlebnLdPRw7s3oIbXp3L9MWr4g6nxolymeulwK5mdpaZnQkMAC6LUG4J0DbheRsgVR9OQynRvFTc35OZLQfGEjRZ/YyZ3W9m+WaWn5eXFyEs51xNIYmbT+zLjrk5XPjEVFZ9vynukGqUKAliCcHVRMXW8tOmo1QmA10kdZRUhyAJ/OxyWUmNgX2BFxKmNZCUW/w/wbgTPgahc+5nGtfP5q5T+7N87QYuedr7a6pIKS9zlXRx+O9S4H+SXiBoIjqaoMmpVGZWJGkk8BrBZa4PmdkcSSPC+feGix4LvG5m6xKKtwDGSiqO8d9mNr5cr8w5V2v0a9uEqw7vwbXj5nD3uwsYeUCXuEOqEUq7DyI3/Ptp+CgWeRxqM3sFeKXEtHtLPH8YeLjEtIUEJ8Wdcy6SM37RnmlfrOTmN+bTu00T9u3qTc7bK2WCMLPrKjMQ55zbHpK44bg+fPzVWkaNnsaLI/embbP6cYdVrZV2o9xt4d8XJY0r+ai0CJ1zLqJ6dTK597QBbNlqjHh8Chs2b4k7pGqttCamx8K/f6+MQJxzriJ0aN6A207ux7mPFHDV87P52wl9CM9nunIqrYlpSthdxvlmdlolxuScc9tlcPcWXDS4C3e89Qn92jbhtD3axx1StVTqZa5mtgXICy9Tdc65auPXg7uwX7c8rntxDlO/WBl3ONVSlPsgFgEfSLpa0sXFjzTH5Zxz2yUjQ9x2cj92apzDBY9PZfnaDXGHVO1ESRDLgJfCZXMTHs45V6U1qV+He08bwKr1m/jl41PZWOQnrcsjyngQfrmrc67a6tmqMX8/sS8j/z2Na1+Yww3H9faT1hFF6azvDUlNEp43lfRaWqNyzrkKdESfVly4fydGT17M4xOjdEbtIFoTU56ZrSp+YmYrgR3TFpFzzqXBJQd1Y/AuO3Ldix8xceE3cYdTLURJEFsktSt+Iqk9qbvtds65KikjQ9w6tB/tdqjPBU9MZcnK7+MOqcqLkiB+D7wv6TFJjwHvEQwP6pxz1UqjnGweOCOfzVu2MvzRKazf5CetS1Nmggh7Ue0PPAU8DQwwMz8H4ZyrljrlNeSOYbsy96s1XOrDlZYqyknqvYD1ZvYS0Bi4Mmxmcs65amn/bjty2ZBdeGnml9z59oK4w6myojQx3QN8L6kvwehynwOPpjUq55xLs/8btDPH7dqam9+Yz8szv4w7nCopSoIosqAOdjRwh5ndjt8o55yr5iRxw/G9GdC+KZc8M52ZS1bFHVKVEyVBrJV0BXA68HLYgV92esNyzrn0q5uVyX2nD6B5w7qc90gBX6327jgSRUkQJwMbgXPM7CugNfC3KCuXNETSPEkLJF2eZP6lkqaHj9mStkhqFqWsc85VhOYN6/LPM3dj3cYiznt0Mt9vKoo7pCojylVMXwHPAXXDSSuAsWWVC2sadwGHAj2AYZJ6lFj338ysn5n1I7h0doKZfRulrHPOVZRuO+Xyj1N25aNla7j4qRls3epXNkG0q5jOB54F7gsntQaej7DugcACM1toZpuA0QTnMVIZBjy5jWWdc267HLBLC648rDvj53zFzW/MizucKiFKE9OFwF7AGgAz+4RoXW20BhYnPF8STvsZSfWBIQQ1lfKWHS6pQFJBYWFhhLCccy65c/fuyLCBbbnrnU95bsqSuMOJXZQEsTH8FQ+ApCyidbWRrLvEVOWOBD4ws2/LW9bM7jezfDPLz8vLixCWc84lJ4k/Ht2LvTrvwGXPzeSDBSviDilWURLEBElXAvUkHQQ8A7wYodwSoG3C8zYEY0skM5Qfm5fKW9Y55ypMdmYG95w2gE55DRnx2BTmfbU27pBiEyVBXA4UArOA/wNeAa6KUG4y0EVSx3DI0qHAuJILSWoM7Au8UN6yzjmXDo1ysvnX2btRr04mZ/9rEl+vqZ2Xv0a5imkrwUnpC8zsBDN7wCJ0XmJmRcBI4DVgLvC0mc2RNELSiIRFjwVeN7N1ZZUtx+tyzrnt0qpJPR46azdWr9/M2f+azHcba9/lr0r1Xa9gyKVrCb6oFT62AP8wsz9WWoTlkJ+fbwUFBXGH4ZyrQd6dt5xzHylg787N+eeZ+WRlRml4qT4kTTGz/GTzSnulvya4emk3M9vBzJoBuwN7SfpNxYfpnHNVz37dduRPx/RiwvxCrnp+dq3q/bW0ManPAA4ysx9O45vZQkmnAa8Dt6Y7OOecqwqGDWzH0pXrufOdBbRpWo+RB3SJO6RKUVqCyE5MDsXMrFCS98XknKtVLjm4K0tXrefvr89nx0Y5nJTftuxC1VxpCWLTNs5zzrkaRxI3Hd+HFd9t5Ioxs2jesA4H7NIi7rDSqrRzEH0lrUnyWAv0rqwAnXOuqqiTFdwj0aNlIy54YirTvlgZd0hplTJBmFmmmTVK8sg1M29ics7VSg3rZvHQWbvRolEO5zw8mU8Lv4s7pLSpWddrOedcJcjLrcuj5wwkM0Oc8c+aeyOdJwjnnNsG7XdowL/OGsjK7zdx5kOTWLNhc9whVThPEM45t416t2nMvacNYMHy7zj/kQI2bN4Sd0gVyhOEc85th0Fd87j5pL5MWvQtI/89lc1btsYdUoXxBOGcc9vp6H6t+eNRPXlz7nJ++0zNGZGutPsgnHPORXT6LzqwZkMRf3ttHrk5WVx/dC+CLu2qL08QzjlXQS7YrxNrNmzmvgkLaZSTze+G7BJ3SNvFE4RzzlUQSVw+ZBfWrC/i7nc/pVG9bEbs2ynusLaZJwjnnKtAkvjTMb1Yu2EzN776Mbk5WZy6e/u4w9omniCcc66CZWaIW07qx7qNRVz1/Gzq18nk2F3bxB1WuaX1KiZJQyTNk7RA0uUpltlP0nRJcyRNSJi+SNKscJ6PAuScq1aK+23ao+MOXPL0DF6e+WXcIZVb2hKEpEzgLuBQoAcwTFKPEss0Ae4GjjKznsCJJVazv5n1SzXakXPOVWU52Zk8eGY+/ds1ZdToabzx0ddxh1Qu6axBDAQWmNlCM9sEjAaOLrHMKcAYM/sCwMyWpzEe55yrdA3qZvHQ2bvRs1UjLnxiKhPmF8YdUmTpTBCtgcUJz5eE0xJ1BZpKelfSFElnJMwz4PVw+vBUG5E0XFKBpILCwuqz451ztUejnGweOWcgnXZsyPBHC/jw05+NxVYlpTNBJLtDpOTthVnAAOBw4BDgakldw3l7mVl/giaqCyUNSrYRM7vfzPLNLD8vL6+CQnfOuYrVpH4dHj93IO2a1ee8RwooWPRt3CGVKZ0JYgmQOCZfG2BZkmXGm9m6cHjT94C+AGa2LPy7HBhL0GTlnHPV1g4N6/LEebvTolEOZ/9rMtMXr4o7pFKlM0FMBrpI6iipDjAUGFdimReAfSRlSaoP7A7MldRAUi6ApAbAwcDsNMbqnHOVYsdGOTxx3u40bVCH0x/8X5VOEmlLEGZWBIwEXgPmAk+b2RxJIySNCJeZC4wHZgKTgAfNbDbQAnhf0oxw+stmNj5dsTrnXGVq1aQeTw7fo8onCZnVjF4HAfLz862gwG+ZcM5VD8tWrWfo/RNZuW4Tj547kF3bNa30GCRNSXUrgXf37ZxzMWnVpB6jw5rEGf+cxLQvVsYd0k94gnDOuRgVJ4lmDatekvAE4ZxzMWvVpB5Pnv9jkphaRZKEJwjnnKsCimsSOzQMTlxPXPhN3CF5gnDOuaqiZeN6PPV/v6Blk3qc9a9JvBdztxyeIJxzrgpp0SiHp4bvQcfmDTnvkQLejLGDP08QzjlXxezQsC6jz9+D7q0aMeLxKbF1Fe4JwjnnqqDG9bN5/NyB7NquCb96cirPTVlS6TF4gnDOuSoqN+wFds9OzbnkmRk8PvHzSt2+JwjnnKvC6tfJ4sEz8xm8y45c9fxs7nn300rbticI55yr4nKyM7n39AEc1bcVN43/mJvGf0xldJOUlfYtOOec227ZmRncenI/cnOyuOfdT1m9fjPXH92LzIxkQ+9UDE8QzjlXTWRmiD8d04vG9bK5+91PWbN+M7ec1I86WelpDPIE4Zxz1YgkfjdkF3Jzsrlp/Md8t7GIe04dQL06mRW+LT8H4Zxz1dAv9+vEn4/txYT5hZz50CS+31RU4dvwGoRzzlVTp+7entycbD74ZAU5WdWsBiFpiKR5khZIujzFMvtJmi5pjqQJ5SnrnHO13VF9W3HTCX3ISMPJ6rTVICRlAncBBwFLgMmSxpnZRwnLNAHuBoaY2ReSdoxa1jnnXHqlswYxEFhgZgvNbBMwGji6xDKnAGPM7AsAM1tejrLOOefSKJ0JojWwOOH5knBaoq5AU0nvSpoi6YxylAVA0nBJBZIKCgvj7RrXOedqknSepE7WIFby1r8sYAAwGKgH/FfSxIhlg4lm9wP3A+Tn56f/1kLnnKsl0pkglgBtE563AZYlWWaFma0D1kl6D+gbsaxzzrk0SmcT02Sgi6SOkuoAQ4FxJZZ5AdhHUpak+sDuwNyIZZ1zzqVR2moQZlYkaSTwGpAJPGRmcySNCOffa2ZzJY0HZgJbgQfNbDZAsrLpitU559zPqTJ6BKws+fn5VlBQEHcYzjlXbUiaYmb5SefVpAQhqRDY1hE1mgMrKjCciuJxlY/HVT4eV/nUxLjam1leshk1KkFsD0kFqbJonDyu8vG4ysfjKp/aFpd31ueccy4pTxDOOeeS8gTxo/vjDiAFj6t8PK7y8bjKp1bF5ecgnHPOJeU1COecc0l5gnDOOZdUjU8QZQ08pMAd4fyZkvpHLZvmuE4N45kp6UNJfRPmLZI0KxxoqULvDIwQ136SVofbni7pmqhl0xzXpQkxzZa0RVKzcF4699dDkpZLmp1iflzHV1lxxXV8lRVXXMdXWXHFdXy1lfSOpLkKBlUblWSZ9B1jZlZjHwTddHwK7AzUAWYAPUoscxjwKkEPsnsA/4taNs1x7Qk0Df8/tDiu8PkioHlM+2s/4KVtKZvOuEosfyTwdrr3V7juQUB/YHaK+ZV+fEWMq9KPr4hxVfrxFSWuGI+vlkD/8P9cYH5lfofV9BpElIGHjgYetcBEoImklhHLpi0uM/vQzFaGTycS9GibbtvzmmPdXyUMA56soG2XyszeA74tZZE4jq8y44rp+Iqyv1KJdX+VUJnH15dmNjX8fy1BZ6Ylx8ZJ2zFW0xNElIGHUi0TedCiNMWV6FyCXwjFDHhdwSBLwysopvLE9QtJMyS9KqlnOcumMy4U9Ao8BHguYXK69lcUcRxf5VVZx1dUlX18RRbn8SWpA7Ar8L8Ss9J2jKVzPIiqIMrAQ6mWiTxo0TaIvG5J+xN8gPdOmLyXmS1TMIb3G5I+Dn8BVUZcUwn6bvlO0mHA80CXiGXTGVexI4EPzCzx12C69lcUcRxfkVXy8RVFHMdXecRyfElqSJCUfm1ma0rOTlKkQo6xml6DiDpoUbJl0jloUaR1S+oDPAgcbWbfFE83s2Xh3+XAWIKqZKXEZWZrzOy78P9XgGxJzaOUTWdcCYZSovqfxv0VRRzHVyQxHF9liun4Ko9KP74kZRMkhyfMbEySRdJ3jKXjxEpVeRDUkBYCHfnxJE3PEssczk9P8EyKWjbNcbUDFgB7lpjeAMhN+P9DYEglxrUTP95gORD4Itx3se6vcLnGBO3IDSpjfyVsowOpT7pW+vEVMa5KP74ixlXpx1eUuOI6vsLX/ihwWynLpO0Yq9FNTBZh0CLgFYKrABYA3wNnl1a2EuO6BtgBuFsSQJEFvTW2AMaG07KAf5vZ+EqM6wTgl5KKgPXAUAuOxrj3F8CxwOsWDGFbLG37C0DSkwRX3jSXtAS4FshOiKvSj6+IcVX68RUxrko/viLGBTEcX8BewOnALEnTw2lXEiT4tB9j3tWGc865pGr6OQjnnHPbyBOEc865pDxBOOecS8oThHPOuaQ8QTjnnEvKE4SrdSQdK8kk7VKB69xP0kvh/0cV95wp6RhJPbZhfe9KKtcg9JKyJK2QdEN5t+dcMp4gXG00DHif4K7YCmdm48zsxvDpMUC5E8Q2OhiYB5yk8MJ857aHJwhXq4R92uxF0P/Q0ITp+0maIOlpSfMl3ahgzIRJYV//ncLlHpZ0r6T/hMsdkWQbZ0m6U9KewFHA38KxAjol1gwkNZe0KPy/nqTRYX/+TwH1EtZ3sKT/Spoq6ZnwNSQzDLid4O7jPSpgd7lazhOEq22OAcab2Xzg28TBVYC+wCigN8Hdq13NbCBBf0W/SliuA7AvQRcH90rKSbYhM/sQGAdcamb9zOzTUuL6JfC9mfUB/gwMgCCJAFcBB5pZf6AAuLhkYUn1gMHASwR9BQ0rZVvOReIJwtU2wwj6xSf8m/hFOtmC/vc3Egy08no4fRZBUij2tJltNbNPCPq6qYhzGYOAxwHMbCYwM5y+B0ET1QdhVwtnAu2TlD8CeMfMvifo2O1YSZkVEJerxWp0X0zOJZK0A3AA0EuSEfRPY5J+Fy6yMWHxrQnPt/LTz0rJ/mnK019NET/+MCtZ80i2HgFvmFlZNYJhwF7FTVYE/SztD7xZjtic+wmvQbja5ASCkbfam1kHM2sLfMZPx0KI4kRJGeF5iZ0JTgynspZgqMhiiwibj8J4ir0HnAogqRfQJ5w+keCLv3M4r76krokbkNQofA3twtfVAbgQb2Zy28kThKtNhhH015/oOeCUcq5nHjCBoIvlEWa2oZRlRwOXSpoWJpS/E/RW+iHQPGG5e4CGkmYCvwMmAZhZIXAW8GQ4byI/b9I6jmCM5MQa0AvAUZLqlvO1OfcD783VuXKQ9DDwkpk9G3cszqWb1yCcc84l5TUI55xzSXkNwjnnXFKeIJxzziXlCcI551xSniCcc84l5QnCOedcUv8PMekJz+9C6moAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Define a saturation nonlinearity as a simple function\n", + "def my_saturation(x):\n", + " if abs(x) >= 1:\n", + " return math.copysign(1, x)\n", + " else:\n", + " return x\n", + "\n", + "amp_range = np.linspace(0, 2, 50)\n", + "plt.plot(amp_range, ct.describing_function(my_saturation, amp_range).real)\n", + "plt.xlabel(\"Amplitude A\")\n", + "plt.ylabel(\"Describing function, N(A)\")\n", + "plt.title(\"Describing function for a saturation nonlinearity\");" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Stability analysis using describing functions\n", + "Describing functions can be used to assess stability of closed loop systems consisting of a linear system and a static nonlinear using a Nyquist plot." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Limit cycle position for a third order system with saturation nonlinearity\n", + "\n", + "Consider a nonlinear feedback system consisting of a third-order linear system with transfer function $H(s)$ and a saturation nonlinearity having describing function $N(a)$. Stability can be assessed by looking for points at which \n", + "\n", + "$$\n", + "H(j\\omega) N(a) = -1", + "$$\n", + "\n", + "The `describing_function_plot` function plots $H(j\\omega)$ and $-1/N(a)$ and prints out the the amplitudes and frequencies corresponding to intersections of these curves. " + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[(3.343977839598768, 1.4142156916757294)]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEGCAYAAABsLkJ6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABE0klEQVR4nO3dd3hUVfrA8e+ZmUx67z1AQu+EXhQQu7iu6Nq76Opi1/2566676u66q6uL67qK2Ltg78oqVUF6byEESID0XiZTzu+PCaEGAsnkTjLv53nyJHMzc897Us4799xTlNYaIYQQvsdkdABCCCGMIQlACCF8lCQAIYTwUZIAhBDCR0kCEEIIH2UxOoCTERMTozMyMtp8nsbGRqxWa9sDMpjUw7tIPbyL1OOglStXlmitY4883qkSQEZGBitWrGjzeXJycsjMzGyHiIwl9fAuUg/vIvU4SCm161jHDe0CUkrdrZTaqJTaoJR6RykVYGQ8QgjhSwxLAEqpZOAOIFtr3R8wA5cZFY8QQvgao28CW4BApZQFCAL2GhyPEEL4DGXkUhBKqTuBvwD1wLda6yuP8ZzpwHSApKSkYQsWLGhzuTabDX9//zafx2hSD+8i9fAuUo+DsrKyVmqts488blgCUEpFAh8AvwIqgDnAXK31my29Jjs7W8tN4IOkHt5F6uFdpB4HKaWOmQCM7AI6A9iptS7WWtuBD4ExBsYjhBA+xcgEsBsYpZQKUkopYDKw2cB4hBDCpxg2D0BrvUwpNRdYBTiA1cAso+IR3svp0lTV26mxOWiwO6m3O+kWE0xogB/55XWsyCun3u6kwe7E5nDh0pqLh6YQHxbAhoJKvt9ShNbg0hoNoDVXj84gNtSfzfuqWLmrHKvFhL/FhNVswmoxMTYzhgA/M5V1dhocTkIDLAT6mXG/VxGiazB0IpjW+mHgYSNjEB3P5dI4tcbPbKKoqoFPN5Xjt2s75XV2KuoaKa9r5PaJmWRnRDF/axHXv7qcI29VvXnjSMZlxbB2TyV3vbfmqDJGd49uTgBPfbftqO9PHZxMbKg/S3JKeOyLoy88f3pwEonhgbz2U17z680mRYi/hdAAC1/dOZ7QAD8+X7eX5TvLiA7xx1VfSR/bfmJCrAxJjcRkkmQhvFunmgksOocGuxO700VogB9ltY3MWpjLvsp69lU0sK+qnsJKG3++sB+Xj0ijqNrGMz8WAUWE+FsID/QjMtiPersTgO4xIcyYlEVEoB8hTe/CA/3M9EkMBWBCzxi+v/c0Aq3u41aLCZNSWM3u3s1Ls1OZNiwFk1IoRfM7+AODH64cmc7UQUnYHC4anS4aHe6P6GD3qItJveOICrZSY3NQ3WCnpsFBtc1BoJ8ZgG37q/l4zV4q6+3uyi8uxGo2sfWxswF45LNNLMkpITEigMTwQJIjAkiNCuLCwcnNcchVhTCKJADRJnani/eW7yG3uJbckhp2FNeQX17PjElZ3DOlJ1prXlqcS0K4uwEclhZJQnggvRPcDXivhFDeu6IHQ/r2xGo5+pZUWnQQ90zp2WL5oQF+hAb4tfh9k0lh4ugG9kCjG2g1E2g1t/j6/snh9E8Ob/H795zZi3vO7EWjw8WqjdsIiUmkqsHefP5uscHsKa9jX2U96/MrKa1tJO2QBHDz6yvJLakhIzqY9OggMqKD6ZUQyqju0S2WKUR7kQQgTqjB7mTTvio2FFSyPr+SrYXVDE2L5E9T+2FWir80daF0jw1mcGokvxySwvisGACigq1sffScFrtD/MwmooMsx2z8OxOrxURMsIXMI5LF1aPSuXpUevPjBruTijp78+NR3aOwWhR5JXUsyy2lttHJyG5RvHfLaABuf3sVfiZFVnwoPeNDyYoLITUqCLN0L4l2IAlAHKa+0cmmfZVU1NmZ3CcegHOfWURucS3gbtD7JoaRGhUEuN9hL3xgItHB1mM28qqp60W4BfiZSQg/eMVx0/juzV9rrSmpaaTW5mh+bHe4WF1QycdrDk6Sv2hIMk//ajBaa+auzKdXgjs5BPi1fCUjxLFIAhDM31rENxv3s3JXOTlFNbg0xIf5s6wpAdx1Rk+sZhMDUsJJCg84qs86NrTzz7b0BkopYkP9m3+eSilmXeOeu1PdYGd7UQ3bC6tJjXQn36JqG/fPXQeApekqYUByGJdmp5KdEWVMJUSnIgnAx+yrrGdZbhnL88r409R++JlNLNhWzOfr9jEsPZKz+yXQPzmcASkHuzKmDkoyMGIB7nsdQ9MiGZoW2XwsLtSfhfdPZMPeSjYUVLJxbxXfbSpkTI8YsjNgy/4q/vzpJoakRTAkLZLs9Egigzv/+vii/UgC8AGb9lbx+k95LM0tJa+0DoCwAAs3jutG99gQ7j2zFw+d11f6lTsZpRRp0UGkRQdx7oBEwN1t5HS5RzhVNziobXQwa2EujqZjveJD+fcVQ+gZH4rLpWWoqo+TBNDFaK3ZUVzDd5uKGJ8VQ//kcCrqG/ly/T5GdIvmqlHpjOoeTZ/EsOYGP8Rf/gy6CqUUFrP79zo8I4pPfzOOBruTdfmVLM8rY9nOMhLC3dtu/OeHHD5aXcDoHtGMz4phdI8YwgNbHlEluh75z+8CXC7Nil3lfLdpP/M2F7GzxH3D1mzqTf/kcEZ2i2b1H8+Ud/g+KsDPzIhuUYzoFsXtEw8e7xEXQkZMMB+vLuCtZbsxKcjOiOIvk2KMC1Z0KEkAnVSD3UleuY1MwKk1N722nHq7k9E9YrhhbAZn9I0nMTwQQBp+cUznDkjk3AGJ2J0u1uypYNH2EqoPmcNwzcs/E+pvYVLvOE7vFUt0iNzs72okAXQiWmvW5lcyd+UePlu7jzCr4ozh7hu5r90wgsy4kONOihLiWPzMJoZnRDG8aeRQTk4OLpcmKTyA/20p4ov1+1AKBqVEcOO4blwggwK6DEkAncTXG/bz5LdbySmqwd9i4uz+CYxOMDUvJTDkkNEhQrSVyaR4/OKBuFyajXur+H5LEd9vKWxe8qK0xsZLi3dyVr8EBqaEy3IWnZQkAC/VYHfyzcb9DM+IIikiENBEBvnx+C8HcO7ARMIC/MjJyZF/POFRJpNiQIp7WPCdZ2Q1r6G0Nr+CFxbm8tz8HSRHBHL+wEQuGJREv6Qw+ZvsRCQBeJk9ZXW8vGQnc1fkU21z8LtzezN9Qg/O7p/I2f0TjQ5P+LgDjfuk3vGs+P0Z7i6idXt5afFOXliYy+LfTiQlMgibw4m/RWYmeztJAF7C5dLc9d4aPl+3F5NSnD8wkUuHpzKqmywKJrxTZLCVacNSmDYshfLaRpbmlpLSNEv5jndWU1xt45LsVM5rumIV3kcSgIFcLs3qPRUMS3evHR9kNXPzhO5cNyajeQSPEJ1BZLCVcwYcvEId2S2ad37ezYMfrufPn23k7H4JXD06nWHpskSFN5EEYIAGu5O5K/N5efFOcktqmXfPBDLjQnn84oFGhyZEu7hhXDeuH5vRPGrt0zV7SYsOZlh6FI0OF/srG0iLDjI6TJ9naAJQSkUAs4H+gAZu0Fr/ZGRMntTocPHm0l08+0MOZbWNDEwJ59+XDyEjOtjo0IRod0opBqdGMDg1gofO64vd6QLgh61F3PLGSsZnxXDdmAwm9oqTJSkMYvQVwEzga631NKWUFejSbwkq6ht58tutDEmL4I5JWYzoFiUjJoRPCPAzNy9XPSQ1gnum9OStZbu48bUVpEUFcc3odK4enS43jjuYYbtwKKXCgAnASwBa60atdYVR8XjK0txSHvp4PVpr4kID+OauCbx540hGdo+Wxl/4pLiwAO6YnMXi307i2SuGEB/mz5tLd+FncjdHFXWNBkfoO5Q+crftjipYqcHALGATMAhYCdypta494nnTgekASUlJwxYsWNDmsm02G/7+np3WnlduY/bPxSzdU0tssIVnpqYRG9y+IyE6oh4dQerhXYyoR7XNSai/GZvDxeXv5NIj2p9LB0aRnRx0ym+U5PdxUFZW1kqtdfaRx41MANnAUmCs1nqZUmomUKW1/kNLr8nOztYrVqxoc9k5OTlkZma2+TzHUlln529fbeb9FXsItlq4bWIm14/N8MhuTZ6sR0eSengXI+tR1+jg1R/zeP3HXeyvaqBfUhi3T8zkrH4JJ72mlfw+DlJKHTMBGLkRaz6Qr7Ve1vR4LjDUwHjahcWs+HlnGdeOyWDBAxP59ek9ZKs+IVopyGrhttMzWfjARP5x8UDqGp3c9tYq1uZXGB1al2TYTWCt9X6l1B6lVC+t9VZgMu7uoE6nrLaR5xfs4J4pPQn2t/D1XRM6/SbnQhjJajFx6fBULh6Wwo87Spp3Qps5bzvhgRYuG5Emb6zagdGjgGYAbzWNAMoFrjc4npP29Yb9PPTxeirr7ZzWM5axmTHS+AvRTswmxfisWMC9Gu6KXWUs2l7C8wtyuWNyFpdkp+Bnlv+3U2VoAtBarwGO6pfqDMprG3n40418unYvfRPDeOPGkfRJDDM6LCG6LKUUb9w4kp92lPLkt1v53UfreWHhDp68ZFDzUtbi5Bh9BdBp3TdnLQu2FXP3GT25bWIPeRciRAcZ3SOaubeO5oetRTz93XZimjaqqbE5CLaaZXj1SZAEcBK01jhcGj+ziQfP7cO9Z/aib5K86xeioymlmNQ7nom94pob/LveXUNFXSMPX9CPASnhBkfYOcjb1lZqdLh48MP13PnualwuTWZciDT+QhjsQOOvtWZS7zjySmuZ+p/F3D9nLWV1DoOj836SAFqhrLaRq15axrvL99A9JsTocIQQR1BKccXINL6/73RuHt+dj9cUcO2cXJbklBgdmleTLqAT2Lq/mpteX05hlY2Zlw3mwsHJRockhGhBWIAfvzu3D5ePSOOxj1bSP8ndFVRjcxDiL83dkeQK4DjsThc3vb4cm93F+7eMlsZfiE6iW0wwD05MIjzID4fTxaXP/8Rv3l5FUXWD0aF5FUmJx+FnNjHzsiEkhQeSEB5gdDhCiFOggbP7J/DsDzks2FbM/53Tm8uHp8kS1MgVwDEtzyvjxYW5AAxNi5TGX4hOzM9s4o7JWXx953j6J4Xz+482cMkLP1FYJVcDkgCOsKGgkhteWc47y3dT1yijCIToKrrHhvD2zSN58pJB+FtMRAZZjQ7JcJIADrG9sJqrX1pGWKAfb900kiCr9JAJ0ZUopZg2LIW3bhqJ1WKiqsHOHe+sZk9ZndGhGUISQJPdpXVc9dIyLGYTb900UjZlF6ILOzB/YMu+an7YUsTZ/1rIOz/vxqjl8Y0iCaDJ6j3lOJyaN28cSUaM7NErhC8Y0S2Kr++ewOC0CB78cD2/eXs1lfV2o8PqMNLH0eTCwclM7B1HWED77tolhPBuyRGBvHHDSF5YmMuT327F32LiqV8NNjqsDuHzCeC7TYWYFEzuEy+NvxA+ymRS/Pr0HozoFkVyhLv7t67RQaBf115czqcTwP7KBu6bs5aM6CAm9oqTccFC+Lhh6e6NZ5wuzc2vryAi0Mo/pg0kuIvOIvbZewAul+beOWtodLh4+leDpfEXQjQzKZiQFctXG/Zx0XNL2FlSa3RIHuGzCeDlJTtZklPKHy/oS/dYWeBNCHGQUopbTuvB6zeMpLjaxtRnFzN/a5HRYbU7wxOAUsqslFqtlPq8o8qsqHfwz2+3cUafOC4bntpRxQohOplxWTF8+ptxpEYG8dDHG7A5nEaH1K68oWPrTmAz0GGL64f6m/n7tIH0Twrr0jd4hBBtlxoVxJxbR1NY1YC/xYzD6UIphbkLdBsbegWglEoBzgNmd2S5ZpNi6qAk6foRQrRKsL+lub149PNN3PLGShrsnf9qwOgrgH8BDwChLT1BKTUdmA6QlJRETk5Omwr8aGM5NfWNXKV1p3/3b7PZ2vzz8AZSD+8i9Ti+UOr53+YiLv3PAh49M5lgq7ndyziUJ38fhiUApdT5QJHWeqVS6vSWnqe1ngXMAsjOztaZmZmnXGatzcFbb+fSO9pKVlbWKZ/HW+Tk5NCWn4e3kHp4F6nH8d2XCVnpBdz7/loe+l8xr14/nOimjek9wZO/DyO7gMYCU5VSecC7wCSl1JueLPDtZbupqLNzxZBoTxYjhOjiLhyczKxrhrGtsJprXv4Zp6tzriFk2BWA1vpB4EGApiuA+7TWV3myzE/WFjA0LYK+cbLQmxCibSb1juf1G0ZQY3N02hvChg8D7SilNTY27q1iYq84o0MRQnQRI7tHM7lPPABfb9jH/srOtcmMVyQArfV8rfX5niyjrtHJeQMSmdhbEoAQon1V1DVy/9x1XPHi0k6177BXJICOkBoVxLNXDKV/crjRoQghupiIICsvXzec/VUNXPniMkprbEaH1Co+kQC01j67448QomMMz4jipWuHs7usjhteW0F9o/fPE/CJBJBXWsf4f/zAByvzjQ5FCNGFje4RzTOXD2FdfgVfrN9ndDgnZPREsA5RUF4PQEqkjP4RQnjWWf0S+PKO8fRJ7LDVbU6ZT1wBVDW4t3gLD5INX4QQnneg8d9QUMnby3YbHE3LfOIK4MAen+GBkgCEEB3nlSV5fLQ6n9SoQMZnxRodzlF84grgQAKQLR+FEB3pkQv7kRUXyox3VnvlQBSfSAAju0XxwNm9CPLwok1CCHGoYH8Ls64Zhsulme6FK4j6RAIYkhbJbadndvrVP4UQnU96dDAzLxvC5n1VvPHTLqPDOYxP3ANosDvJLa6le2wwAX5yFSCE6FgTe8fxyvXDGZ8ZY3Qoh/GJK4AF24o595lFbN1fbXQoQggfNbFXHBazibLaRoqrvWOm8EklAKWUSSnl/YNbj5AeHQTALi+8CSOE8B12p4tfPreEe+esRWvjl5A+YQJQSr2tlApTSgUDm4CtSqn7PR9a+0mLcieA3aW1BkcihPBlfmYTN4zrxsJtxXy0usDocFp1BdBXa10F/AL4EkgDrvZkUO0tyGohLtSf3BJJAEIIY101Mp2haRE8+vkmwxeNa00C8FNK+eFOAJ9ore2A8dcuJ2lYeiQLt5V02p17hBBdg8mkePzigdTYHDz6+SZDY2nNKKAXgDxgLbBQKZUOVHkyKE+4fWIm9XYnMhBUCGG0nvGh/Pq0HmzaV0Wjw4XVYsx4nBMmAK31M8AzhxzapZSa6LmQPEP2ARBCeJO7zuiJyeCtJFtMAEqpq7TWbyql7mnhKU+1pWClVCrwOpAAuIBZWuuZbTnniWwvrOa95XuY1lOWhBBCGOtA459XUsveynrG9Oj4OQLHu+4Ibvoc2sJHWzmAe7XWfYBRwO1Kqb7tcN4W7SypZfbinawskJvBQgjvcP/ctdz7/lpsjo5fJqLFKwCt9QtNn/985PeUUta2Fqy13gfsa/q6Wim1GUjGPdTUI07rFUt8mD9vri7litO1LA0hhDDcjElZXPPyz8xZkc9Vo9I7tGx1oskISqn5wHVa67ymx8OB2VrrQe0WhFIZwEKgf9OQ00O/Nx2YDpCUlDRswYIFbSrrq60V/HNRIX+cnMSEbu1xIWMcm82Gv7+/0WG0mdTDu0g9OpbWmjs+201pnYPXLumOn/nwN6btUY+srKyVWuvsI4+3JgGcBczEfSM4GTgHuElrvapNER08fwiwAPiL1vrD4z03Oztbr1ixok3lOV2ayU/MA5OFb+8+zbC77+0hJyeHzMxMo8NoM6mHd5F6dLz5W4u47pXl/O2XA7h8RNph32uPeiiljpkAWjMK6Bul1K3Ad0AJMERrvb9N0RwMyg/4AHjrRI1/ezGbFNNHxLGt2oLdadzwKyGEOOC0nrGMyIiipIPXCDphAlBK/QG4FJgADATmK6Xu1Vp/0ZaClbsD/iVgs9a6TSOKTtaI1GCu6CTvDIQQXZ9Sinenj+rwYaGtefsbA4zQWv/UdGP4LOCudih7LO4lJSYppdY0fZzbDudttTV7Krj3/bUyO1gIYbgDjf/ODlyy5oQJQGt9p9a6/pDHu7TWU9pasNZ6sdZaaa0Haq0HN3182dbznozthdV8sCqff83b1pHFCiHEMb26ZCeT/zmffZX1J35yO2jNaqCxSqknlVJfKqW+P/DREcF52iXZqVwyLIV/f5/D/K1FRocjhPBxp/eKw6Xhs7V7O6S81nQBvQVsBroBf8a9LtByD8bUoR65sD+9E0K5+701XrlpsxDCd2TEBDMoNYJP1nhPAojWWr8E2LXWC7TWN+CeudslBFrNPHflUBwuzctLdhodjhDCx104KImNe6vIKfL8DoatSQD2ps/7lFLnKaWGACkejKnDdY8N4aPbxvC7c/sYHYoQwsedPzARgG82Fnq8rNYkgMeUUuHAvcB9wGzgbo9GZYDMuFD8zCaKq21Mf30FRVUNRockhPBBcWEBvHHjCK4Z7fllIVozCuhzrXWl1nqD1nqi1nqY1vpTj0dmkPzyOpbklHDZi0vZXylJQAjR8cZnxRIa4PlVi2Ua7BGGpEXy6g0jKKxsYOqzi1m1u9zokIQQPqau0cFz83NYllvq0XIkARzD8IwoPrxtLAF+Zi57YSk/bJEhokKIjmMxmZg5bzvfbfLsfYDWzAMwezQCL9UrIZRPbh/L1MFJDEqNMDocIYQPsVpMDEgO93gPRGuuAHKUUk94erMWbxQZbOXJSwYRFWyl0eHikc82sbtU5goIITxvaHokGwqqsDs9t1RNaxLAQGAbMFsptVQpNV0pFeaxiLzUxr2VzFmxh7NnLuT1n/JwyfpBQggP6psYRqPTRUFVo8fKaM0ooGqt9Yta6zHAA8DDuOcEvKaU8pklNYekRfLN3RPIzojij59s5MrZy2TmsBDCYzLjQrBaTBTXOjxWRmuWgzYD5wHXAxnAP3EvDzEe+BLo6bHovExSRCCvXT+c95bv4bEvNjPjndV8dNuYTre1ZIPdSXldI+W1dmwOJw6Xxu504XRpHE6N06Xxs5gIsJgI8DMT4Gcm0M9MRLAfof6WTldfITqjvolhbH7kbHbm7vBYGSdMAMB24AfgCa31j4ccn6uUmuCZsLyXUorLRqQxvmcsNQ0OlFJU1DXy445SzumfYGjj6HRpCsrrySutpaCinvzyOgrK6ympaaSstpGKukbK6hppsLtOuQyr2UR0iJXoECvJEYFkxASTER1MenQQ3WKCSQgLkAQhRDvoiL0BjpsAmt79v6q1fuRY39da3+GRqDqB5IjA5q/fWrabJ77ZyrD0SH5/Xh+GpkW2+fw33ngjK1asQGtNz549efXVVwkJCWn+fnG1jS+Wb+PJc39Bvc1Og62R4CHnETjonObnmE2KhLAA4sP8SQi14tg0j4LFn+FsqCcyOoaLr7mZ06acjcWksJhMWMwKi0lhNimW/biYJ//8O3K2buKBv/+XoaedTXldI6W1jZTWNFJSYyOnqIYfthTT6HRR9MEjOCr202/GiwxKjWBgSgRD0iIY1S2aQKtPDiQTos2e+d929heV8FcPbWB13ASgtXYqpSYCx0wAwu3W03oQHWzln99t45fP/cik3nHcPrEHw9KjTvmcTz/9NGFh7nvtd951Nw8++gT9zr2GFXllrC+opLDKhnbaMU19jD5xYaSHmvjiT1fy8G+uZWif7qRGBREf6o/FbEJrzRVXXEHf+Hje+P4r4uPjKSgo4N577yXSWc6dd955VPlhI/oz8p03efLJJxmWHsm07NRjxul0aV56413m9E5h88YKpvSNZ+2eShZu245Lu4ezjewWxWk9YzlnQOJhiVMIcXzr8ivJLfTcBjGt6QL6USn1LPAe0BxJe20K3xWYTe5uoQsGJfHy4p28vGQnLy/Oa04AWuuT6hZxuTS7qjTzl29nSU4JXy/ahgqNI1xtoXtMMGN7xNAvOZxIXc2U4X0IDfCjtLSUhX8z84shySQlRR92vtdee4309HQef/zx5mPJycm8/fbbnHXWWUybNo3k5OTDXpORkQGAyXT8cQL1dbW8/uJ/mDVrFpdeein/mDYIgFqbg1W7y1mwtZj524p57IvN/OXLzYzLjOGS7FTO6Z+An1nmIQpxPLGh/qzMM/AmMDCm6fOhVwEamNTWwpVSZwMzATMwW2v9+Ale4tWC/S3MmJzFjeO7UdPg/qVtL6zm7vfXcM2oDM4flEiQ9dg/8uoGO/O3FvPD1iIWbiumpKaRki/+hT1vJUndMnnqH88wrk8KsaH+za/Jycmhong/Y887j5ycHJ544gmSkpKOOvfrr7/Oxx9/THFxMddeey0VFRWMHTuW7Oxsbr/9dt577z3uueeeY1dqzRo4//wW6/yHP/yBe++9l6CgoKN+FuOzYhmfFctDwO7SOj5cnc+cFfnc8c5q0qKCuHNyFr8cmnzsEwshCLKaaXCc+j27E2nNMNCJx/hoj8bfDPwHOAfoC1zeVSabBVktxIUFAFBW24jN7uKBD9Yx8i//4w8fb2DT3irAvd7Hp2v3Mv31FQx7bB4z3lnN91uKGNMjhqcuHUTeT59TV1HMOeOyqdi48LDG/4DU1FTWrVtHTk4Or732GoWFR08ddzgchIWF8de//pXp06ezaNEicnJyqK+vp1evXuzYcZxRBmvXtvitNWvWkJOTw0UXXXTCn0ladBB3ndGTRQ9MZPY12YQFWrh3zlqufWU5FfWee4cjRGcW4GfC5vDcnKPWXAGglDoP6AcEHDjW0o3hkzACyNFa5zaV8S5wIbCpjec9oZgVT8KiPZ4uBoCRwLeRmupAB0XVNkpX26heDVsDrVTWNxKn4Razid9FWIkKthIaYEE1KFiL+wP4VVgpT/xrLtcz97BzJ9fXwyJ3n3oS0M+6l0WPnMO07MTDnmcu3givnMeWecv5W5/NmF9/kTNDd8GipynaEkhcQRm8ct6xK5DU8nuEn376iZUrV5KRkYHD4aCoqIjTTz+d+fPnt/gak0lxRt94JveJ47Wf8nj0s03kF1dwH2GcO+DoqxchfJXLpdlVWkeQn4nthdVkxYe2exmtmQfwPBAETMS9F8A04Od2KDsZOLQVzsfdXh5Z/nRgOkBSUhI5OTltLjjS6aS+vmM2XW7m0lhwYVEKu0tT1WAnMtBCtc2JnwnMOMFpp6Hegdaa3OJ6esQFobXmoxV7yYwNOCrmPWX1xIQ4CbSaKa+zs3h7GbedlnTU81xOF0Xl1fSI9eezVXs5t380X68rZHKfKP7xZQF/+UWPw15jKcjHr6Dg4AkuuQSAshkzKLvj4MCvKVOmMGXKFADy8/OZPn06s2fPbvXvyNpQg8Ws2FftoGhvATmBnXtinc1ma5e/T6NJPbxDg92Fq76amkYXazZtRVVHtHsZrboHoLUeqJRap7X+s1Lqn8CH7VD2se6KHnWto7WeBcwCyM7O1pntMBwqh98S7aFhVUdauaucFxfmMm9zIQ6XZkyPaC4fkcaZ/eIxK8W/v8/h83V72VFci0nBoNQIbhqXwV9vu5SqqmK01gwaNJ7//ve/BIaFsWLFCp5//nlmz57Nj6++ylNPPYVSCq019z/6L4ZPn35UDFdaZvG3zZv5wztzuPbaa3l6XRXjz7qBD5ct48EnnmHwWWcd9Zrly5dz0UUXUb63gM+iong4IYGNzzxDFDB48GDWrFlz2PMtFgtWq5XW/n7+/vUW/ju/gPgwf24fHs7UsYOICLKeyo/Ya+Tk5LS6/t5M6uE9CucXo4Ah/XqRGWfAFQBw4K1hnVIqCSjFvUF8W+UDh44tTAE6ZidkD9Nas3B7Cc/9kMOynWVEBPlx47hu/Gp4Kt1jQw577t1TenLXGVlsLazmq/X7mb+tmHqHZsmSJewpq+PJb7cyPCOKwnpFaKgmOzub2bNnAzBu3Diuu+66E8Zz0003cfHFF/P8888zZ84cQkNDKS4u5sMPP2Ty5MnHfM3w4cPJz88HpaD08DXJj2z8wT1qaMOGDS3G0GB38t2mQiZkxRIe5EefxDBuO70HMyZlUbB7Z6dv/IXwhCGpkWwsqPRI4w+tSwCfK6UigCeAVbjfpc9uh7KXA1lKqW5AAXAZcEU7nNcwLpfm6437eW5+DhsKqkgIC+Ch8/pw+Yg0gv1b/lErpeidEEbvhDDunnJwZY280lp+2lHKJ2vceTEyyI/sjCgeOq8P6dHBOFu5IJ3JZGLu3Lk899xznHXWWTQ0NJCUlMQ999yDxXKCP4GHH25VGceyt6KeBduKWbC1mCU5JVTbHPz94gH8angaUwclMXWQ9PkLcTz1dif+Fs8Nlz5hAtBaP9r05QdKqc+BAK11ZVsL1lo7lFK/Ab7BPQz0Za31xrae1yjL88p47PNNrM2vpFtMMH+/eAC/GJKMv+XUZ8GOz4pl2e8ms6u0jp/zyli+s4wVu8qbZ9bOXV/GZ3P/R5/EUHrEhpAZF0KPuBCGpEZgOWKMvdlsZsaMGcyYMePkgvjTn074FJdLU1jdwM7iWgKtZoakRVJe28iYx78HICk8gPMHJXHegETG9Ig+wdmEEAeU1jQSEeC5mfStHQU0BvdCcJamx2itX29r4VrrL3EvKNdp5ZXU8vhXW/h6437iw/x5YtpAfjk0BXM7reOhlHKvtxMTzKVHzMZNj/RnVHcrWwtr+HFHKTaHCz+zYtMjZwMwc952Vu0uJy7Un8hgKxFBfsSHBnDxsBQA9lc20OhwuZeAMLuXg7BaTIQ0Xa0UV9uosTlosDuptzspr20kwM/M2MwYAO59fy0bCirZVVbbvL7QWf3ieeHqbCKDrfz1ogFkZ0SSFRci6wMJcQqKqhuICmpVM31KWjMK6A2gB7AGcDYd1kCbE0BnVtfo4OnvtvHqj3n4mU3cfUZPbp7QrcWJXp4wKi2Eqya5b3IdWAiuoKK+eYatSbnnIWwrrHbPR3C4SI4IbE4A989dy6LtJYeds2d8CN/efRoAN72+grV7Kg77/tC0iOYE0GB3khoVyPisGNJjgsmIDqJfUnjzc68YmeaRegvhK4qqbfSO9tzm8K1prbKBvlpr2QGlybLcUu6fu47dZXVcmp3CfWf2ap74ZRSzSZEWHURa9MEZuTMmZzFjclbz4/pGJzW2g5Oupk/ozoWDk3E4XThcGofTRVjgwT+2GRMzqWqwH1wOOsiP+EPq+Z8rh3q4VkL4rkaHi32VDUxI99z6Wa1JABuABGCfx6LoJOoaHfzj66289lMeqZFBvDt9FKO6d54+7UCr+bCVOcdnxR73+Wf0jfd0SEKIFuSV1uJ0adIjjl4BoL20JgHEAJuUUj8DtgMHtdZTPRaVF1q5q5x7319DXmkd145O57fn9O7Q7h4hhG/JKaoBIC3Cc0OkW9OC/cljpXcSby/bzcOfbiAhPIB3bh7FaBnJIoTwsC37qjApSDUyAWitF3isdC/X6HDxyOcbeXPpbk7vFcvMy4YQHui5GzJCCHHAqt0V9E4II8CIeQBKqcVa63FKqWoOX6JBAVprHeaxqLxASY2N295axc87y7j1tB7cf1avdhvaKYQQx+N0adbsqeAXQzw7WbLFBKC1Htf02TNzkL1YXkktV85eRkmNjZmXDebCwbJmvRCi42zZX0WNzdG0vWyDx8ppzTyAY+1rWK21tnsgHsPtKq3l8heXYnO4mHvrGAakhJ/4RUII0Y4WbCsGYGxmDNVF+R4rpzWdS6uAYmAbsL3p651KqVVKqWEei8wAe8rquHzWUhrsTt66aaQ0/kIIQ8zfWkzfxLDD5t14QmsSwNfAuVrrGK11NO4dvN4HbgOe82RwHWlPWR2XzVpKnd3JmzeNpE9il77FIYTwUpX1dlbtKuf0Xsefp9MeWpMAsrXW3xx4oLX+FpigtV4KeG6GQgcqrbFxxeylVDfYefPGkYctZyCEEB3p2437cbg0UzpgImZr5gGUKaV+C7zb9PhXQHnTnr6e2624gzhdmrveW0NhlY33bxlN/2Rp/IUQxvlkzV7So4MYnBrh8bJacwVwBe7NWj4GPgHSmo6ZgUs9FlkH+ff321m0vYQ/XdCvQ37gQgjRkqKqBn7cUcKFg5I6ZAXd1kwEKwFaWkS+8264CSzaXszM/23nl0OSuXxE6olfIIQQHvTR6gJcGqZ20NDz1gwDjQUeAPoBzbektdaTPBiXx+2vbOCud9eQFRfCYxf1l/XqhRCGcro0byzdxYhuUWTGhZz4Be2gNV1AbwFbcO8D/GcgD/d2jp3aX77cTG2jg+euHCqLugkhDPf9liLyy+u5bkxGh5XZmgQQrbV+CbBrrRdorW8ARrWlUKXUE0qpLUqpdUqpj5r2HO4wW4rr+WztXqaP7+6xzZaFEOJkvPZjHonhAZzZgcuwtyYBHJjxu08pdZ5Sagjum8Jt8R3QX2s9EPcEswfbeL5W01oza1kx0cFWpp/Wo6OKFUKIFq3Lr2BxTglXjUo/aj9vT2pN38djSqlw4F7g30AYcHdbCm2aS3DAUmBaW853Mr7fUsS6/fU8emG/5r1vhRDCSDPnbSc80I9rRqd3aLnK6J0elVKfAe9prd9s4fvTgekASUlJwxYsOPXVqZ0uzfQP87A7Xbx8SXcsnXx1T5vNhr9/55+LJ/XwLlKPjrWtpIHbPt7FdcNiuGrI0XuNtEc9srKyVmqts4883ppRQN1wDwPNOPT5J9oRTCk1D/dWkkf6vdb6k6bn/B5w4L7RfExa61nALIDs7GydmZl5opBb9OOOEnZVbOPB0xPp3TPrxC/wcjk5ObTl5+EtpB7eRerRsf6y6GfCA/2454KhhAUcvd+IJ+vRmj6Qj4GXgM84iZm/Wuszjvd9pdS1wPnA5I7acP7zdfsIspoZm9ExQ6yEEOJ4Fm0v5oetxTx4Tu9jNv6e1poE0KC1fqY9C1VKnQ38FjhNa13Xnuduid3p4qv1+5jcJ96jO+wIIURrOF2axz7fTGpUINeNzTAkhtYkgJlKqYeBbzl8U/hVbSj3WdwLyX3XNAFrqdb61jac74R+3FFKeZ2d8wcmAjWeLEoIIU7o7Z93s7WwmueuHIq/xWxIDK1JAAOAq4FJHOwC0k2PT4nWusM75j5fu5dQfwun9Ywlf5ckACGEcQqrGvjHV1sY0yOac/of61Zpx2hNArgI6K61bvR0MJ70445SJvSMJcDPmEwrhBAHPPzJRhqdLv560QBDl6FpTWf4WiDCw3F4lM3hZG9lPT06aH0NIYRoydcb9vP1xv3cdUZPMmKCDY2lNVcA8cAWpdRyDr8HcNxhoN4kv7werSEjOsjoUIQQPqy42sZDH6+nb2IYN43vZnQ4rUoAD3s8Cg/bXeoeaJQuCUAIYRCXS3PfnLVUNzh4++bB+HXgkg8tac1+AKc+9dZL7CqtBSAtytjLLSGE73p5yU4WbCvm0V/0p2e8dyxC2WICUEpV4x7tc9S3AK217jS7pu8pryfAz0RMiNXoUIQQPmhDQSX/+HorU/rGc9XINKPDadZiAtBae0eKagcWs8LV6XcvFkJ0RuW1jdz65kqigq38/eKBXrX5lPGdUB0gPNCPRqcLm0OygBCi4zicLma8s5qiKhv/vWooUcHe1QvhEwngwBoblfX2EzxTCCHazz++2crinBIe+0V/hqRFGh3OUXwiAYQHSgIQQnSsd37ezayFuVw9Kp1Lh6caHc4x+VQCqJIEIIToAN9vKeShjzdweq9Y/nhBX6PDaZFPJIC4MPdmCrtKO2ThUSGED1uXX8Htb62mT2Io/7liqFeM92+J90bWjnrGhRIVbGVJTonRoQghurAdxTXc8OpyokOsvHzdcIK9fNtZn0gAJpNiTI9oFueUYPQWmEKIrimvpJYrXlwKwGs3jCAuNMDgiE7MJxIAwPisGIqqbWwrlKWghRDtK7+8jitnL6PR4eKtm0bRI7ZzLDzpMwlgXFYs4N6CTQgh2su+ynqueHEZ1Q123rxpJL0SOs8cWp9JAMkRgXSPDWbhdrkPIIRoH3kltVzy/E+U1zbyxo0j6ZcUbnRIJ8XQBKCUuk8ppZVSMR1R3jn9E1i0vZg9FZ16bxshhBfYvK+Kac//RK3NwVs3j2RQaoTRIZ00wxKAUioVmALs7qgyrx/bDX+LiXfXlnZUkUKILmjlrjJ+9cJP+JkVc24dzcCUCKNDOiVGXgE8DTzAsVcc9YiYEH8uH5HGvJwq9pTJnAAhxMmbv7WIK2cvIzrEnzm3jiYzrvP0+R9JGTEsUik1FZistb5TKZUHZGutj9k5r5SaDkwHSEpKGrZgQdu2JyiutXP1e7mc0yuCO8fGt+lcRrPZbPj7+xsdRptJPbyL1KNln2+p4JklhXSL8ufxs1KIDPL8OP/2qEdWVtZKrXX2kcc9Fr1Sah5wrO3ufw/8DjizNefRWs8CZgFkZ2frzMzMNsWVCZy5qpRvtlfx0EXDiA/z/rG6LcnJyaGtPw9vIPXwLlKPozldmse/2syLiws5vVcs/758CKFNi0x6mid/Hx7rAtJan6G17n/kB5ALdAPWNr37TwFWKaWOlSw84rJBUThdmpn/295RRQohOqkam4Nb31zJi4t2cu3odGZfk91hjb+ndfg8Za31eiDuwOMTdQF5QlKYlevGZPDS4p1M6RvPxF5xJ36REMLn7Ciu4ZY3VrKzpJaHL+jL9WON38i9PfnMPIAj3X9WL3onhHL/nHWU1NiMDkcI4WXmbSrkF88uoay2kTduHNHlGn/wggSgtc7oyHf/BwT4mfnXZYOpqrfzfx+slzWChBCAexevJ7/Zyk2vryAjJpjPZoxjTI8OmarU4QxPAEbqnRDGA2f3Yt7mQt75eY/R4QghDFZQUc9ls5by7A85XJqdwpxbR5McEWh0WB7j3WuVdoAbxnZj/tZiHv18EyO7R3WaRZyEEO3rm437eWDuOhxOFzMvG8yFg5ONDsnjfPoKANxLRT95ySD8/Uzc+OpyiqobjA5JCNGB6hod/OHjDdzyxkpSowL54o7xPtH4gyQAABLCA3jp2uEUVdu45qWfqaiTtYKE8AUr8so4Z+Yi3ly2i5vGdeODX48hIybY6LA6jCSAJsPSI3nxmmxyi2u59pXl1NgcRockhPCQBruTv325mUte+AmnS/POzaN46Py++FvMRofWoSQBHGJsZgz/uXIoGwoquem15TTYnUaHJIRoZyt3lXPBvxfzwsJcLhuextd3TWBU92ijwzKEJIAjTOkbz1OXDmLZzjJue2sVdqfL6JCEEO2gst7O7z9az7Tnf6TG5uCV64fzt18OIMTL9+31JN+t+XFcODiZGpuD33+0gdveWsXMywYTZJUflRCdkdaaL9fv50+fbaS0xsb1Y7pxz5k9fbrhP0B+Ai24cmQ6Dqfmz59t5JLnf+LFa7JJ6sLjgYXoivJKannk8018v6WI/slhvHztcAakdK5duzxJEsBxXDsmg7ToIO54ezVTn13CrGuGMTQt0uiwhBAnUN1gZ9ayIj7atA2r2cRD5/XhujEZWMzS630o+WmcwMRecXx42xiC/c1cNmspH63ONzokIUQLnC7Ne8t3M/HJ+by/vpwLByfzw32nc9P47tL4H4NcAbRCVnwoH982ltveWsXd761lW2EN95/ZC5NJGR2aEKLJstxSHv1iExsKqhiWHsmfJidw/ugBRofl1SQBtFJksJXXbxzBnz7dyH/n72Db/mr+Pm0gMSGdf+ckITqzDQWVPPHNVhZsKyYxPICZlw1m6qAkduzYYXRoXk8SwEnwM5t47Bf96ZUQymOfb+bMpxfy6IX9OW9gotGhCeFzdhTX8NS32/hi/T4igvx48JzeXDM6g0Crb03magtJACdJKcU1ozMY3T2a++as5fa3V/Hl+kQeubAf0XI1IITHFVTUM3PeNuauzCfAz8wdkzK5aUJ3wrrILl0dSRLAKcqKD+WDX4/hhYW5zJy3nZ9yS+VqQAgPyiup5YWFO/hgZQEouH5sN359eg/phm0DSQBtYDGbuH1iJmf0iT94NbAhkUemytWAEO1l874qnpu/gy/W7cViNnHp8BRuOz1T5uW0A8MSgFJqBvAbwAF8obV+wKhY2qpXQigf3ea+GvjXvG0s3VHK3VN6ctnwVBl6JsQpWrmrjP/8sIPvtxQR4m9h+oQe3DAug7jQAKND6zIMSQBKqYnAhcBArbVNKdXpd2U/9GrgoY/X89DHG3h5yU7+7+zeTOkbj1IyZFSIE3G6NPM2F/LS4p38vLOMqGAr907pyTWjMwgPkj7+9mbUFcCvgce11jYArXWRQXG0u14Jobx/y2i+21TI419vYfobKxmeEcmD5/aRWcRCtKC8tpH3VuzhjZ92UVBRT1J4AH88vy+XjUiVdbg8SBmxGbpSag3wCXA20ADcp7Ve3sJzpwPTAZKSkoYtWLCgzeXbbDb8/T3fR+90ab7aWslrq0oor3cyoVsIN2THkhJubZfzd1Q9PE3q4V06sh47Shv4eGMF/9tRRaNTMygxkF/0jWRMegjmNk60lN/HQVlZWSu11tlHHvdYAlBKzQMSjvGt3wN/Ab4H7gSGA+8B3fUJgsnOztYrVqxoc2w5OTlkZma2+TytVWtz8OKiXGYtzKXR4eLKkWncenoPEsPbdhOro+vhKVIP7+LpejQ6XHy3qZDXfszj57wyAvxMXDQkhWvHpNM7IazdypHfx0FKqWMmAI9dW2mtzzhOML8GPmxq8H9WSrmAGKDYU/EYKdjfwl1n9OSKkWnMnLedN5ft5q1lu7lgUBI3je9GvyRZnVB0fRsKKpm7Mp9P1hRQXmcnJTKQ353bm0uzU4kIap+rYnFyjOpc+xiYBMxXSvUErECJQbF0mLjQAP5y0QBuPa0HLy/ZyXvL9/DR6gLGZkZz8/junNYzVm4Wiy6lrLaRj1cXMGdlPpv3VWE1m5jSN55p2SlMyIptczePaBujEsDLwMtKqQ1AI3Dtibp/upLUqCAevqAfd53Rk3d+3s0rS3Zy3SvL6RUfyo3ju3Hh4CSf25tUdB0Op4v5W4uZuzKf/20pxO7UDEgO55EL+zF1UJK82/cihiQArXUjcJURZXuT8EA/bj2tBzeM7cZna/fy4qJcHpi7jie+2co1o9KZlp3S5vsEQnQEl0uzcnc5n63dy5fr91FS00h0sJVrRmdwSXZKu/bti/Yj46u8gNVi4uJhKfxyaDJLckqZtSiXf363jafmbWNcZgzThqVwZt8EWeRKeBWXS7M2v4Iv1u3ji/X72FfZgL/FxKTecVw0JJmJvePwk4mQXk0SgBdRSjEuK4ZxWTHsKq3lg1UFfLgqnzvfXUOIv4XzByZy8bAUstMj5V6BMITd6eLnnWV8s3E/324sZH9VA35mxWk94/i/c3ozuU+87LXbichvykulRwdzz5Se3DU5i2U7y/hgVT6frt3Lu8v3kBEdxC+HpjAsykHnH+QmvF1lvZ1F24v5fksR/9tcRGW9nQA/E6f1jOWBfr2Y3Cee8ECZpdsZSQLwciaTYnSPaEb3iObPU/vx1Yb9fLAyn6e+2wbAoCWlTOkbzxl94+kVHypXBqLNtNZsL6zm+y1FfL+liBW7ynG6NOGBfkzuHceZ/RI4rWesdEl2AZIAOpFgfwvThqUwbVgKe8rqeOX79awqdPDkt9t48tttpEYFckafeKb0jWd4RpT0v4pWK6mxsSSnhMXbS5i/ZT/Fte43GL0TQrllQncm9Y5jcGqELG7YxUgC6KRSo4K4YnA0f8zMpKiqgf9tKeK7TYW8tWw3ryzJIyzAwsTecUzpG8+EnrGyWYY4TGW9nRV5ZSzNLWVxTimb91UB7pFpgxICuGtwBhN7xcmSy12cJIAuIC4sgMtHpHH5iDTqGh0s3FbCvM2FfL+liE/W7MVsUvRPDmdU9yhGdY9meEaU3KjzMaU1NpbnlbE0t4yfd5axeX8VWoPVbGJYeiT3n9WLcZkx9E8OZ2fuDjIz040OWXQAaQW6mCCrhbP7J3B2/wScLs2q3eUs2FrMsp2lvLx4Jy8syD0qIWSnRxIqVwhdht3pYsu+albtLmf17nJW76lgV2kdAAF+7gb/rsk9Gdk9isGpEQT4SV++r5IE0IWZTYrhGVEMz4gCoL7Ryard5SzNLWVp7sGEYFIwIDmc4RlRDEgJp39yON2igzHJNH2v53C62FFcy4aCSjburWJ9QQXr8iuxOVwAxIX6MzQtkstHpLl/v8nhWC3Sjy/cJAH4kECrmbGZMYzNjAGOTgivL91FY1PDEeJvoW9SGAOSwxmQHE7/5DC6xbR9iV5x6irr7WwvrGZrYTUb91axcW8VW/ZVNTf2AX4m+iaGcdWodIakRTAkLZKk8AAZGSZaJAnAhx2ZEOxOF9sLa9hQUMmGvZWsL6jkzaW7mhuYIKuZfklh9E0Mo0dcCN1jQugeG0yiNDLtRmtNRZ2d3JJathdWs62whu1F1WwrrKawytb8vNAAC/2Twrl6VDr9k8PplxRG91hJ0OLkSAIQzfzMJvomhdE3KYxLSQXcXQw5xTWszz/QxeBe0re20dn8uiCrmW4xwXSPDaF7TDDdY4PpERtCt5hgguVm81FcLk1xjY09ZXXkldaxq7T24OeSWqoaHM3PDfQzkxkXwtjMGHrGh5IVF0LP+FBSIgMl6Yo2k/9OcVwWs4neCWH0TgjjkqZjWmuKqm3sKK5hR3EtucU15BbXsmZPOZ+v28uh67qGBVhIDA8kMSLA/Tk8gMTwAJIiDnzdtYYZNtidlNTYKK1ppKjaxr7KevZWNDR9dn9dWNWAw3Xwh2RSkBIZREZMML8YEkF6dDAZ0UFkxbkberkXIzxFEoA4aUop4sMCiA8LYEyPmMO+12B3kldaS25xLbtK69hXWc++SncDuD6/ktLaxqPOF2w1ER2yh4ggPyKCrEQG+REZZCXikM8RQVZC/C0E+pkJtJoJ9DMT4GciwM+Mv8XULu+GtdbYnRq704XN4aKmwUFVg50am4PqBgc1NjvVDY7mj8r6RkpqGpsb/OLqeurtW486r59ZkdCU7IZnRJIYEUhSRCApEYFkxASTHBEoN2aFISQBiHYV4GduvmI4lga7k8KqBvZWNLC/yv2OOCe/EO0XRHmdnYq6RvJKaimva6T6kK6Q41HK3VUSeEgyUMp93KQUCnfSUk3PVUphd7podBz8sDld2J0uWrsrhZ9ZER5oJSbESkyIP2lpQZgd/vRIjiMmxEp0sD+xof4kRgQQE+wv7+KFV5IEIDpUgJ+Z9Ohg0qODm4/l5HDMPU8dThcV9e6kUF5np9bmoMHupN7upMHuor7xwNfOw45r7X43r3F/dmmavz7w2c9swmo2YbUc8nHIMX+LiZAAP0L8LYQFWAgN8CMkwEJogIUQf8sxx853lT1ohe+QBCC8lsVsIibEn5gQf6NDEaJLMqTjUSk1WCm1VCm1Rim1Qik1wog4hBDClxl15+kfwJ+11oOBPzY9FkII0YGMSgAaOHCXMBzYa1AcQgjhs5Ru7bCH9ixUqT7AN4DCnYTGaK13tfDc6cB0gKSkpGELFixoc/k2mw1//87fryz18C5SD+8i9TgoKytrpdY6+8jjHksASql5QMIxvvV7YDKwQGv9gVLqUmC61vqME50zOztbr1ixos2xdZXRGlIP7yL18C5Sj4OUUsdMAB4bBXS8Bl0p9TpwZ9PDOcBsT8UhhBDi2Iy6B7AXOK3p60nAdoPiEEIIn2XUPICbgZlKKQvQQFMfvxBCiI5jyE3gU6WUKgaOebP4JMUAJe1wHqNJPbyL1MO7SD0OStdaxx55sFMlgPailFpxrBsinY3Uw7tIPbyL1OPEZAlCIYTwUZIAhBDCR/lqAphldADtROrhXaQe3kXqcQI+eQ9ACCGE714BCCGEz5MEIIQQPsrnE4BS6j6llFZKxZz42d5HKfWEUmqLUmqdUuojpVSE0TGdDKXU2UqprUqpHKXU/xkdz6lQSqUqpX5QSm1WSm1USt154ld5L6WUWSm1Win1udGxnCqlVIRSam7T/8ZmpdRoo2M6FUqpu5v+pjYopd5RSgW05/l9OgEopVKBKcBuo2Npg++A/lrrgcA24EGD42k1pZQZ+A9wDtAXuFwp1dfYqE6JA7hXa90HGAXc3knrccCdwGajg2ijmcDXWuvewCA6YX2UUsnAHUC21ro/YAYua88yfDoBAE8DD+Den6BT0lp/q7U+sHv6UiDFyHhO0gggR2udq7VuBN4FLjQ4ppOmtd6ntV7V9HU17sYm2dioTo1SKgU4j068QKNSKgyYALwEoLVu1FpXGBrUqbMAgU3L5gTRznun+GwCUEpNBQq01muNjqUd3QB8ZXQQJyEZ2HPI43w6acN5gFIqAxgCLDM4lFP1L9xvilwGx9EW3YFi4JWmrqzZSqlgo4M6WVrrAuBJ3D0U+4BKrfW37VlGl04ASql5TX1nR35ciHtfgj8aHWNrnKAeB57ze9xdEW8ZF+lJU8c41mmvxpRSIcAHwF1a6yqj4zlZSqnzgSKt9UqjY2kjCzAU+K/WeghQC3S6+0tKqUjcV8TdgCQgWCl1VXuWYdRqoB2ipT0JlFIDcP9Q1yqlwN1tskopNUJrvb8DQ2yVE22Wo5S6FjgfmKw718SOfCD1kMcpdNLtQZVSfrgb/7e01h8aHc8pGgtMVUqdCwQAYUqpN7XW7drodIB8IF9rfeAqbC6dMAEAZwA7tdbFAEqpD4ExwJvtVUCXvgJoidZ6vdY6TmudobXOwP0HM9QbG/8TUUqdDfwWmKq1rjM6npO0HMhSSnVTSllx3+D61OCYTppyv4t4CdistX7K6HhOldb6Qa11StP/xGXA952w8afp/3iPUqpX06HJwCYDQzpVu4FRSqmgpr+xybTzzewufQXgI54F/IHvmq5mlmqtbzU2pNbRWjuUUr/BvT+0GXhZa73R4LBOxVjgamC9UmpN07Hfaa2/NC4knzcDeKvpjUUucL3B8Zw0rfUypdRcYBXu7t3VtPOyELIUhBBC+Cif7AISQgghCUAIIXyWJAAhhPBRkgCEEMJHSQIQQggfJQlA+ByllFMptaZpNvVnp7qCqlLqOqXUs+0Qz9TOuhKq6NwkAQhfVK+1Hty0wmIZcLuRwWitP9VaP25kDMI3SQIQvu4nmhagU0r1UEp9rZRaqZRapJTq3XT8AqXUsqaFxeYppeKPd0Kl1Ail1I9Nz//xwIxUpdQ9SqmXm74e0HQFEnTolYRS6pKm42uVUgs9WnPh8yQBCJ/VtB/BZA4uPzELmKG1HgbcBzzXdHwxMKppYbF3ca+WeTxbgAlNz/8j8Nem4/8CMpVSFwGvALccY/mOPwJnaa0HAVNPtW5CtIYsBSF8UWDTkg0ZwErcy2iE4F5oa07TkhrgXmID3IvUvaeUSgSswM4TnD8ceE0plYV7dVM/AK21Syl1HbAOeEFrveQYr10CvKqUeh/orIvKiU5CrgCEL6rXWg8G0nE36Lfj/l+oaLo3cOCjT9Pz/w08q7UeANyCe6XM43kU+KHpHsMFRzw/C6jBvbzvUZrWcXoI9yqpa5RS0adSQSFaQxKA8Fla60rcW+7dB9QDO5VSl4B7hU+l1KCmp4YDBU1fX9uKUx/6/OsOHFRKhePeqnACEK2UmnbkC5VSPbTWy7TWfwRKOHy5bCHalSQA4dO01quBtbiXP74SuFEptRbYyMHtKf+Eu2toEe5G+UT+AfxNKbUE9yqnBzwNPKe13gbcCDyulIo74rVPKKXWK6U2AAubYhPCI2Q1UCGE8FFyBSCEED5KEoAQQvgoSQBCCOGjJAEIIYSPkgQghBA+ShKAEEL4KEkAQgjho/4fx5kJApRf12MAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Linear dynamics\n", + "H_simple = ct.tf([8], [1, 2, 2, 1])\n", + "omega = np.logspace(-3, 3, 500)\n", + "\n", + "# Nonlinearity\n", + "F_saturation = ct.saturation_nonlinearity(1)\n", + "amp = np.linspace(00, 5, 50)\n", + "\n", + "# Describing function plot (return value = amp, freq)\n", + "ct.describing_function_plot(H_simple, F_saturation, amp, omega)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The intersection occurs at amplitude 3.3 and frequency 1.4 rad/sec (= 0.2 Hz) and thus we predict a limit cycle with amplitude 3.3 and period of approximately 5 seconds." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAD4CAYAAADxeG0DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABEaklEQVR4nO29eZhcV33m/57au7auqq6q3lutXbYkW7LbsrGN8UYwhMGDExOYsAQIDgxkyAxPZpgZGMIvA9kTksAMmGFJGJYwYAgQCNh4X7As2bLc1tqSWuq9qrr2fTu/P26d6pbUS9W95y6lPp/n0WOplntPdbnf+73v+S6EUgqBQCAQdC4mvRcgEAgEAmUIIRcIBIIORwi5QCAQdDhCyAUCgaDDEUIuEAgEHY5Fj5MGg0E6Ojqqx6kFAoGgYzl8+HCMUhq69HFdhHx0dBSHDh3S49QCgUDQsRBCzq/0uLBWBAKBoMMRQi4QCAQdjhBygUAg6HCEkAsEAkGHI4RcIBAIOhwh5AKBQNDhCCEXCASCDkcIuUAgEKjMock4/vnIDArlmirH16UgSCAQCOSSylfwo6OzePPefvhdNr2Xsy7lah0f/L8vIpYtweOw4PP/7jq8bsdlxZmKEEIuEAg6hoePLeBj3z2CdLGK43NpfPate/Ve0rr866vziGVL+MM37MREJIur+jzczyGEXCDYwByZSmLQ14WQx673Ulric4+cQtBtx41bevC9w9P4g7u3I+xx6L2sNfnGc5MYCTjxoddthclEVDmH8MgFgg3KRCSL+/7XM7jnc0/iqdNRvZezLnOpAl6dTeP+sWH8tzddhUqtjq8/M6n3stbk1EIGL0wm8M6bRlQTcUAIuUCwYfncI6fgsJrR47bh/V8/hMVsSe8lrckvj0cAAHdfFcbmoAtvuLoP3z54AfW6cecOP38uDgB4455+Vc8jhFwg2ICcmE/jJ0fn8N5bRvFX9+9DuVbHYyeNHZX/8vgCRgJObAu7AQB37Aohka/g3GJO55WtzrHZFLq7rBjyd6l6HiHkAsEG5LsvTMNuMeEDr92C3QNehD12/PL4gt7LWpV8uYpnzizi7qt6QYhkUewb9gMAjlxI6riytXl1No09g97mmtVCCLlAsAE5MpXANUPd8DltMJkI7roqjCdPRVGqqpPnrJRXZ9MoV+u4dXtP87FtYTdcNjOOTCX1W9gaVGp1nJjLYPdAt+rnEkIuEGwwKrU6xmfTuHbI13zsrl29yJVreP5sXL+FrcHphSwAYEfvUuqe2URwzZDPsEI+EcmiXKtj94BX9XMJIRcIODGbLOAz/3LM8JuGJ+czKFfruHbY13zslm1B2C0mPHHKmD756UgGTpsZA90Xe837Rnw4PpdGsWK8O4lXZ9MAICJygaCT+MQPx/Hlp87h/i89h5lkQe/lrAqLYPctE/Iumxm7+jw4PpfWZ1HrMBHJYlvYfVkK375hH6p1ildnUzqtbHVenU2hy2rG5qBL9XMJIRcIOPDYiQgePRHBb1w3hGi6hE/84BW9l7QqL08l0eOyXZZJsbPPg5PzGZ1WtTanF7LYFnJf9vj+xsXo5SkjCnkaV/V7YFYxf5whhFwg4MCf//wktgRd+JP79uJtNwzjmTOLyJerei9rRY5MJXHtsO+yTIqdfV4s5sqIZoxlDWWKFcyni9jWe7mQhzx2eB0WnI1ldVjZ2kzGcs1USbURQi4QKCSeK+P4XBq/OTYEm8WEO3eFUa7W8czEot5Lu4x8uYqJaBbXDF3u2+5sbCQaLSqfiEgivT18eY8SQgg2B104v5jXellrUqzUEMmUMOR3anI+IeQCgUIOn08AAMY2BQAAN4wG4LZb8OiJiJ7LWpEL8TwoBbauYFPsbDRzOrlgLCE/3RTylaPb0aAL52LGKgqabeyRqF0IxBBCLhAo5ND5OKxm0oxybRYTbt0WxOMnI6DUWOXjFxqR60jg8kgx5LGjx2XDyXljbXhORLKwWUwYXmHNALCpx4XZZMFQOfBTCUnIV1szbxQLOSHEQQg5SAh5mRDyKiHk0zwWJhB0Ci+eT2D3QDccVnPzsTt3hTGXKuLUgrG82wtxScg39awsMEbc8DwTyWJL0LXqpuHmoBN1CkzFjWOvTCektXRSRF4CcCel9FoA+wDcQwi5icNxBQLDU6rW8PJ0CmOb/Bc9ft0mHwAYLi3uQjwPj8OC7i7ris/v7PPg1ELWUI2oZpKFNQVxtEdK7zsXM46QT8ULsJqJZi12FQs5lWBhh7Xxxzj/FwgEKjI+I5WOj41eLOSjPS7YLCbDRbfnF/PY1ONctffHjl4PCpWaofLg51JF9HevLuQsT/u8gZpnTSfyGPR1aZJ6CHDyyAkhZkLIEQARAA9TSp9f4TUPEEIOEUIORaPGrB4TCNrllekkgKUGTgyL2YRtITdOGEzIp+L5Ff1xBntuOmEMIc+Xq0gVKuj3rR7Z+pw2dHdZDbXhOZ0oaJaxAnASckppjVK6D8AQgAOEkD0rvOZBSukYpXQsFOI7r04g0ItzsRxcNjN6vZdP2DGa31yrU0wl8mtuwDELYyphDJtiNlkEgMtK8y9lNOjCpMEicq38cYBz1gqlNAngcQD38DyuQGBUzi3mMRp0rWhV7OzzYD5dRCpf0WFllzOfLqJSo9gUWL1kvL+7CyZinIh8LiWto797ba95c48TkwbxyAvlGmLZsmYZKwCfrJUQIcTX+HsXgLsBnFB6XIGgE5iM5TC6Si8No+VlMw95LWvFZjGhz+vAtEEyQFg+9oBv7eh2U48Ls6kCytW6Fstak5mkthkrAJ+IvB/AY4SQowBegOSR/4TDcQUCQ1Ou1jGdyGPLKkK+iwm5QfKyp9ZJPWQMBZyGichnk0UQAvStE5EP+BygFIhkihqtbHWm4toWAwGARekBKKVHAeznsBaBoKOYSuRRp0vpb5fS53XA67AYZsPz/GIeFhNZ16YY8nfhuTPGaC8wlyog5LbDal475uxreOhzqaKmm4wrMZ+WLiZ96/j6PBGVnQKBTCYbWRKrWSuEEOzs8zSHIujNXKqIXq8DlnVEcdjvxHy6aAibYi5VRP86tgoADDQuTrMGSJuMpKWmYyH35RvgaiGEXCCQCUt3W6vf9EjAZZgMkIV0ccXsmksZDjhBqTFEcTZZaIr0WjDrZT6lv7USyRThd1phs2gnr0LIBQKZTC7m4HVY4HeuXCUJAMOBLsyni4boAyIJ+fqiyLxdvX1ySilmk8V1NzoBwOOwwmO3YM4AQh7NlDSr6GQIIRcIZDIZy2PzKqmHjGG/FN3OGGDzMJIutSTkLG1O7zuJVKGCQqW2rqfP6Ot2NNMV9SSSKSHk0c5WAYSQCwSymVxcPfWQsSSK+gpMvlxFplRFuAVrpc/rgMVEmo2f9KJZDNRCRA4A/b4uA0XkQsgFAsNTq9NGhsTaIjMcaFRK6pyXzTbgelu45TebCPp9Dt2tFZZK2IqvDwD9XofuQk4pRTRTQqjFNfNCCLlAIINYtoRana6bYtbrccBmNuluUyykmSi2aFN4Hc336EUsWwYABFvM/uj3ORDLlnTNtkkVKijX6ppmrABCyAUCWbDIr38dYTSZCAb9XZiO6xvdLjTmcLYa3fZ6HVhI6zu7M5aVzt+ykHdLRUF6XoAijZ9zuMULJi+EkAsEMmBpbutVHAJSFojeEXmkIW6tZlP0NiJyPSccxTIldFnNcNlbq1vsX1YUpBfMwhIeuUDQAcw3siNaEfLhgFN3j3whXYTdYoK3qzVR7PXakS/XkC1VVV7Z6sSyJQQ9tpZfP9Bodatn5ko0K11ERNaKQHAJlZr+FYaXMpcuwmY2IeBcX2iG/U4k8hVkivp1QVxopB6ulSq5HOal62lTRLOllm0V4OIyfb0QEblAsAIn5zPY/amf48BnHsFfP3xK7+U0WUgV0dtth6mFCTBLmSv6RYqtVnUyloRcP588lim3JeRuuwVuu0V3j7zLaoa7RTuIF0LIBYbmb395CjazCdvCbvzdL0/jbNQ4fUv6WtzQYk2c9ByfFsmU2tqAY59Nz5L3WLb9wpqQx45oRr+LT7RRDNTqnQ8vhJALDMvxuTR++so83nfLKD739n2wmgm+8avzei8LgBThttrdrimKOkWKlFIpIm+jbJwVDi3o1Ba2Wqsjnm8vIgekRlV6CnkkU9TcVgGEkAsMzINPnoXHbsH7bt2MsMeBN+3tx/cOTSOn4wYcIAmjNBC4NWEMum0wEcmO0YNsqYp8udaWteK0WeBxWJqer9bE82VQCoTcrW92Ao2IPKt/RK41QsgFhoRSiqdOx3DXVWH4GhuK737NJmRKVfxsfF7XtSXzFZSq9ZaLayxmE0Ieu24ROYtQ241u+7wO3ayVWKa9YiCG3tbKYq79uwgeCCEXGJJzsRxi2RIObO5pPrZ/2A+f04oXzsV1XNmSRdJqRA7oWykZzzVEsc1Isdfr0M1aaRYDyfDIM8UqihXtu01Wa3Uk8xUEXO3dRfBACLnAkBxsiPWBzYHmYyYTwXUjfhy+kNBrWQDaKwZi9Ooo5KzUvadNgQl77brZQe1WdTJYabweUXmiMWRbCLlA0ODguTh6XDZsDV3cXfD6TX5MRLJI5ss6rWwpT7nVrBVAEn29bAoWkfe06Tf3eR2IZEqo17Wv7lwS8vY9cgC6+OSJxv+TQsgFggYHJ+M4sDlwWRrXdSN+AMBLF5I6rEqCdeVrZ1Or1+tAulhFoaz9LX88J4lauwLT63WgWqeI63DRjGXLcFhNbedjN4Vch4h8UeadDw8UCzkhZJgQ8hgh5Dgh5FVCyEd5LEywcZlNFjCdKOCG0cBlz1073A2zieDwef3slVi2BL/Tuu5A4OX06piCGMuW4bFbYLeY23ofy3LRwxKKZaSqznbzsfUUcnbn4+9EIQdQBfAxSulVAG4C8GFCyNUcjivYoIzPpAAA+0d8lz3ntFlwdb8XL+rok7dbcQjoW2ATz5URaNOiAICexmdkHruWtFuez+hx2UDIUhdCLWF3Lh0ZkVNK5yilLzb+ngFwHMCg0uMKNi6nI1L15rawe8Xn94/4cHQ6pVtnvpgMkenr1i+6XcyVZIkL+4yLOvjN8VxZ1potZhN6XDZ9IvJsZ0fkTQghowD2A3h+heceIIQcIoQcikajPE8ruMKYiGTR3+2Ax7HyUOPtvR5kS1Xd8rKlrnztp/IB+lgri9kyAq72o1u20RjTY+MwV5YtiEGdqjvjuRI8DktblhsvuJ2REOIG8H0Af0ApTV/6PKX0QUrpGKV0LBQK8Tqt4ApkIpJdNRoH0MxkORPJabWki4hly21nU3gcVrhsZl2slUWZ0a3bboHdYtLFWonny7KzP/Sq7oznK7rYKgAnISeEWCGJ+DcppQ/xOKZgY1KvU0xEstge9qz6GibyE5GMVstqUqxIPbrl+Le93Y5mxotW1OsUiVy57dRDACCEIOi2I6ZxdFso11Cs1OFvoUXwSoQ82q8ZkCJyPVIPAT5ZKwTAVwAcp5T+tfIlCTYyM8kCCpUatveuHpGH3HZ4HBZM6NAJUW5+M6BPyXu6WEG1TmULTFCH6JblY/udK1tr68HK9LXeQ5FrYfGAR0R+C4B3AbiTEHKk8edNHI4r2IBMrLPRCUiR4rawWxdrpd2BwMsJe+yaZ1Ms5uSvFwCCLpvm1orSNL6Q245yrY50Qdvmaol8GQGXvIuPUhR3P6eUPg1A2+a7giuW0w27ZFtodSFnzz9+SvtN85jMBlTsPbGsFClq1a+aFanIjsjddhxtpINqhdIKSWYjLeZK6JYZ1bcLpVRK8+zgiFwg4MZEJIug275uNLY17EY0U0KqoO34NLnNnNh7ipU6chpWd7KqTjkeOQAEPTbEc2VNy/SbEblMj5yJKTuOFmRKVVRqtLM3OwUCXpyJ5i7rr7ISLGI/o7FPzoRcSV62lhtxSw2zZForbjtqdYqkhhfMZKP5lFyPnH03WlpCeuaQA0LIBQbjQjyPTT3OdV+3lLmitZCX4XFY4LC2V+4OLJWPa5mXzaJSJdYKoP2aCQG6u2QKeePuQ8uIXM+qTkAIucBAFCs1RDMlDPvXF/IhfxfMJoILi3kNVrZENFtqtkptF5bpomWxymJWKlKxWeT9qjNR1PIuIpEvo7vLCovMwhp20WK2khbEFe5FKEUIucAwTCckUR4OrC/kFrMJ/d2O5nu0YlFmDxBgqVe2ptGtwiKVZn9vjSPygEx/HADsFjM8dou21oqOLWwBIeQCAzEVl6bMDwdaG2o87HdiKqHtZPpYtoygR+4mnNTQKaqhwCTz5eaoPDkEdWiclciX4VOYbRJw2zS1Vlh/fOGRCzY8Uywib8FaASR7ReuIPJYtyd44tJhNCDhtmkbkiXxZ9qYhIPnUFhPRds055ePSAi4bFjW0VpL5CiwmApet/b0THgghFxiGqXgedoup5YENQ34nFtIllKrapPNVGjMZ5abyAdC85D2Rq8hO4wOk8Xo9bpumHRCli48yIe9x2Zs59FqQLFTgc1o1qw+4FCHkAsMwFS9gyN/V8i/DkF+yYGaT2pS9s7Q4JZ5z0GPT1G9Waq0AkihqZa0sFdYoXbP21orcLBseCCEXGIapRL6ljU4GE3Kt7JUEBx801Kju1IJyVSo+Uuo397htzc+uNoVKDaVqXbHX3NPwyLXqt5LMK7vzUYoQcoFhmIrnW/bHgaXslmmNNjyV5mQDzFrRRhSTBWXNpxh+pw0JjaLbpapOhZudLhuqdapZv5VkvqL4gqkEIeQCQ5AqVJAuVlvOWAGkYQ0WE8FUXJuInIuQe+woVGrIldQXGGYFKbVWAhraFEtVncojcgCIabThmSpU0N0lInLBBoeJcTsRudlEMODr0j4iVyAyWuaSJxT2LGH4nTaki1VUanUey1oTXgOMezTut5LkkDKpBCHkAkMwk5TEeKgNIZder10KIhNGRXnZGk55Z/1RlAqMv9GalUXLaqK0FzmD3TVpkbnS3IsQm52CjQ4buNDvc7T1PknINYrI82V47PLL3QFt52CyIhXFQt64cGmx4Zkq8LGDmoOjNbBW2F6ET6diIEAIucAgzKWKsDUKZtph0OdEJKNNLrmSgcCMJYFRXxQTnPzmpd4l6q+ZRf1KU/nYXURcg4g8xfYiREQu2OjMpwro7bbDZGqvoKK/W4rgI2n1I694vqJYyFl0rEUWSCJfhs1sglNhtWEzItdIyN125ZPoWb8VLS6YvCwsJQghFxiCuVQR/d7WM1YYvQ0hX0irXxSUkDmNfjl2ixlujQQmla+gm0O1YTMi18BaSRb4Fdb4Xdrkvzezg0TWimCjM58uoq+7PX8ckAYaA9KFQG3iOeWl44AkjFpF5Eo3DQFt7yJ45mP7ndamvaQmCU57EUoQQi7QHUqpFJHLEXINI3KpdFz5L6vfZdPMI1e6aQgADqsZLpsZ8Zz6opjk0GeF4XPamhu+atL0yDtdyAkhXyWERAgh4zyOJ9hYJPIVlKt1WRG512FBl9XczHpRi0K5hkKlxqVNaY9mt/x8InJAQ5uiUOE2MFmKyLWxg8wmArdd8Sx72fCKyL8O4B5OxxJsMGYbOeRyInJCCPq6HZhTOSJvTnbnEC36nTZNsimS+Qo331ar6s5UvsIt+8PvsiGhyV2EtGa9Oh8CnIScUvokgDiPYwk2Hiya7utuf7MTkHzyBZUjcl4Vh0CjoZPKkSKlVBIYDlYQ0Oi3osWaCzw9chuypSrKVXUrUnneRchFeOQC3WHRtJyIHJB8crU3OxMch+v6nTYUK3UUyurlvufLNZRrdW5+sxYReaZURa1Oud1FMFuJFeyoRTJf1jWHHNBQyAkhDxBCDhFCDkWjUa1OK2iTZyZi+OITZ/D9w9Oo1bVpATqfKsBiIrJnYfZ6HYhkiqiruF6uETkrH1ex6pBXqTvD77SpXqLPe9OQbfSqvW69W9gCgGbuPKX0QQAPAsDY2Jg2CiFoi8dPRvC+r78ApoezyQJ+/67tqp93LlVEr9cBc5vFQIz+bgcqNYp4viz7YrAePBpmMdjFIJGrYMiv+HArslQhySsityJbqqJUrcFuUWecGa9ujQytCpmS+Qp29nlUPcd6CGtFAAC4sJjHf/j2S9jR68FLn3w97t03gL955BQOnlN/62M+JS+HnNHbyCVXM3MlkSvDRAAvh1vogAYR+VI7WH4bh8uPqwbNniXcIvJG/rvadxIFfpvKcuGVfvhtAM8B2EkImSaEvJ/HcQXa8fePnkalRvHld4/B77LhM2/di0F/Fz770+Oqn1upkLP3qink8cbINLl3DcthQq7m5iGPaUbLYXciavrkSc49S7T4OVdqdWRLVV1zyAF+WSvvoJT2U0qtlNIhSulXeBxXoA3RTAn/fGQWv3n9UHPqjttuwbtu2oQjU0mcjWZVO3ezGMgrX8jZJum8iimI0hBjvgKjZotVXp0PGUt2kPpr5pdHrr6QJw1QDAQIa0UA4JvPn0e5Vsd7bxm96PF79w3CRIAfvjSj2rnThSoKlZqiiDzotsNsIupG5BwGAjO8DgssJqKNwHDMIwfU7bfCe81dNjPsFpOqdlCqaQddAdaKoHOp1Sm++fwF3LEzhC0h90XP9XoduGVbEA+9NKNaRshcmhUDycshB6RJQQGXTdUe3zyFnBACv8rpfIl8BS6bWVHv9OVosXGYLPBdM6D+vFHedpBchJBvcA6eiyOaKeH+seEVn7/vukFMJwo4Mp1U5fxzSVYMJD8iB6QRampO3Ynn+Qk5IHnO6vrNZa5RIrMO1Oy3kuTUG2Y5PpUbZwlrRWAI/nV8Dg6rCbfvDK34/G3bpcefO7OoyvlZIY/cYiBGyGNHVKWInFIqDZXgKDJ+l1XliLzcHK7AA6vZBK/DoqodlOLYwpahdkVqsxf5lZC1IuhM6nWKn43P4/YdYThtK5cU9Ljt2Nnrwa/OqiPk86kCTEQSYiWEPHbEVIrIM6UqqnXKNSLvcdlVt1Z4F6moXd2Z4NjClhFQudkX7w1auQgh38C8NJVAJFPCG/f2rfm6m7YEcGgyocoU9blUESGPXfFEmKBbisgp5e/l85pGvxy1I/JUocI/utVAFHkLuc9pVTf3PV+B2UTgdejX+RAQQr6h+cWxBVjNBHfuCq/5upu29KBQqeHodIr7GubTRUUbnYyQx45KjTaH9/KkWdXJ0yN32ZEsVFRrg5Dg2Nebobavnyrw98j9jZ7kam3Ws4lGenY+BISQb2iePBXD9Zv88DjWjoIObA4AgCr2ityBEpfCrBk1Njx59llhBJxWUApVBh/U6tIFjVfeO8OnYgZIs1sj57sIn9OKOgUyxSrX4zLUWLMchJBvUCKZIo7PpfHa7Stvci6nx23Hjl43nlehXF9pVScj5FZfyHl0PmQEGutVw6pIFyqglH9uc8BlVS2PPNvYh+B9F6F2UVDKAC1sASHkG5anT8cAAK/bsb6QA8D+YT9emU5y9aAzxQqypSrfiFyFzBXe5e7AUsm7GtWdak1197vUa7/bbPKlwmYnoF4hU8IALWwBIeQblqdOx9DjsuHqfm9Lr98z6EUiX8FMY5oPD5QOlFiOuhF5BTazCS4bv65/avYBWWphy98jB9QRxaUmX/zzyKXjqyPkRmhhC2jYxlawMqVqDd85OIWD5+JIFyt47fYg7r9+mGv0dyn1OsVTp2O4dXsQphabQO0Z7AYAjM+kMeR3clnHLKcccgDwdllgM5vUichzUk42zw2tpQ6IaoiiOlPdl/dbGfQpv/guh3fnQ8ZSRao6mSupvLBWNjyvTKfw63/3ND71o1fx8nQSC+kiPvvTE/j1v3sKr6iQIcI4Pp9GLFtqyR9nXNXvhdlEMD7Db13zKSm671PQMItBCJGKgtSIyFXIAGHFOmpsHjLRUiOPHFCnA2KCc9tdhpoeeaVWR6ZU1b0YCBARuW4cPh/He776ArwOC7723htwx04pBfDodBIf/MZhvO1Lz+EHH74Zu/pasz7a4amGP/7a7cGW3+OwmrE97MYrHIWcVXX2chByAAh67Iip4Dnz7LPCsFvMcNst6kTkannkKopiihXWcBZFj8MCE1Gnj3papZ+zHERErgMn5tN4z1dfQMhjx/f//c1NEQeAa4Z8+OGHb4HHYcGH/u+LyBT5/w/45KkodvV52hbQPYPdGJ9JcdvwnE8VEXTbuTVJUqvfimSt8I+6Ai510vmS+cYQjHXSStsloGIr20RzohHfNZtMREqbVGUvQgj5hiWRK+MD/3gITpsZ3/rAjSsWw4S9Dnz+312HC/E8/vgnx7ieP1+u4tBkoq1onLF3sBuLuTK3vt+8csgZIY9NNWuFZ+ohw++yqRKRJ/JSkUqr+x+tIhW+AHEVottkvgK33cK18yHD77SqcxdhkBa2gBByTanXKf7gn45gIVXCF991/ZoVjQc2B/D+Wzfj/x2exlGOnQefPxtHuVbHbS2mHS5nz6Bk84zPpLmshVcOOSPktiOeK3GtlqzW6o3iGhUicpUERo0+K4DULtjXZVXtLoJ3NM6QWtmqc/EB9G9hC2xAjzxbquLxkxE8fTqGM9Es0oUqHDYzdvV6cPO2Hrxhdx8cVnWGy/6fp8/iiVNR/PG9u3HdyPpTdz9y5zY89OI0Pv3jY/jeB1/DJWviydNR2C0m3DAaaPu923ulAbOnFjJ4/dW9itcylyrgxi3tr2M1Qh476lSahRn28LlApBrFNbw9ckAq0z85n+F+XDUzKfwumzrph4UK126Ny/E5bZhO5Lkf1ygtbIENJOQXFvP40pNn8IOXZpAv1+B1WLCrz4vRoBPZUhU/PzaPfzo0Bb/Tig/dvhW/c/Nmrrd5R6aS+PN/PYl7dvfhnTdtauk9XocVH/u1nfivD72Cx05GcOcu5eL55KkobtzSI+ti5XVY0d/twOkF5eKTK1WRLla59FlhsKKgWKbMTcjVKAZiqFUpmciXuW0gX0rAaUNcjSKmfFm17A+/04rxGRUicoO0sAU2gJDPJAv4/KOn8f8OTcNkInjLtQN429gwrt/kv2iQbr1O8dzZRTz45Fl89qcn8E8vTOFv376/mT+thFShgo9860X0eh34s9+4pq3I+jevH8LnH53A3/1yAnfsDCuKymeSBZyJ5vCOAyOyj7G914NTC8pneDKfna9Hzr+6kw1SCKhhrbjsKFbqyJerq7YRlkMyX8HOPg+34y1Hzeh2gHNuOoN1baSUcq0FYJvKHp07HwJXsJAvpIv4wmMT+M7BKQDAb984gn9/x7ZVIxWTieCWbUHcsi2Ix05E8PGHjuK+//UsPvlvrsY7bxyR/T8ApRQf//5RzKeK+O4HX9P2La/VbMKHbt+KT/xwHM9MLOJWGZuUjKdORQFAlj/O2BF24/mzi6jVqaKJ8rwmAy0nqEJ1ZzwnHUuN2/6Ai03dKXMVcjU6HzLUjG7Vsij8ThtK1ToKlRr3C6Yam8py4OIdEELuIYScJIRMEEI+zuOYcjk2m8bHvvsyXvtnj+Fbz1/Ab1w/iMf+8HZ8+t49Ld9u3rErjJ999Dbcsq0Hn/zhOD7+/VdQqsrrL/GNX53Hz8bn8Z/v2dmSL74S948Noddrxxcem5D1fsZTp2Po9dqxPexe/8WrsKPXg1K1jgtxZVHZXIrN6jS6kDcicpU8cukc/KyKUrWGfLmm2gacGj3J63WKpMoXHwDcR74lVWi7KxfFlydCiBnAFwC8HsA0gBcIIT+ilPLNm1uFWp1iIpLFMxMx/Gx8Di9MJuC0mfGOA8N4/61bMNIjr5w84LLhK++5AX/zyCn8/aMTOLmQwRffeX1bEeSLFxL4nz85jjt2hvC7t26RtQ5AKh553y2b8Sc/O4HxmZQsu6dWp3h6IobXX92r6PZyR9/ShufmoEv2ceY5FwMBgMtugctm5jqEWa2+JcDFETkvUmwDTqUWD83otlxDF6feM5lSFXXKP4ec4XMu5b/zbC2gZqZNu/C4zzgAYIJSehYACCHfAXAvAO5C/o3nJvHI8QhK1RpK1TrShQqmEwWUqtLkmh29bnz8jbvwjhtGuOzam0wEH/u1ndg94MV/+u7LePPfP40vvvM6jLWQ8XEmmsX7v/4CBnwO/NXb9im+/XrHjSP4+0cn8OWnzuJv376/7fcfPp9AqlBZdTZnq7Bo/vRCBm/YvfZkobWYSxcRcNm4ZwjxLtOP58pw2cyqZDKpEZGrVerOYMeN58sYtPERxaSKF0vpuKxxFueIPF9Bj/sKicgBDAKYWvbvaQA3XvoiQsgDAB4AgJEReZtt2VINyUIFdosJbrsFfV4H7twVxlX9XoxtCsiOvtfjnj392BJy44F/PIR3fPlX+NS/2Y3fXsM3H59J4X1ffwEmQvAP7zvA5bbc67Di7TcM42vPTuI/37Or7cji4WPzsJlNLbetXQ2X3YJBX5fiDc/5VJFLj5VLCXKu7lSrqhNY1k2Qq5CrK4pqRLdqp/H5Veo0mSyUsTUk/66UJzyEfCU1u6wig1L6IIAHAWBsbExWxcaHbt+KD92+Vc5bFbOj14N//sit+Oh3XsInfjiOp05H8fE3XnWRvVCt1fGtgxfwZz87ge4uK77x/huxqYffF/3eWzfja89O4mtPn8Mn3nx1y++jlOIXxxbwmq09604DaoUdvW6cUpiCOJcqYoCjP84Ieew4HVGeVcOI5/n3WWF4HBaYTYSrwCRVKnVnqBHdqtUbhqFWK9tk/gryyCFF4MPL/j0EYJbDcQ1Hd5cVX3nPDfjiE2fwhccm8Itjj2P/sA87+7woVWt47swi5lJF3Ly1B3/zW/u45/IO+rrw5mv68e2DF/D7d21v+Zf1dCSL84t5fOC18n365ezo9eCZiUVUa3VYZA5Nnk0WcP0mH5f1LCfksePZM/xG0sVz6m3CmUwEfqe1uaHKg6SKee/Lj8v34qNuqbu/eefD7+dcrdWRKVYNUQwE8MlaeQHAdkLIZkKIDcDbAfyIw3ENidlE8OE7tuHxP7wd/+nuHajWKR4+toAnT8Wwb9iHL73renzzd29UrSDjA6/dgly5hu8cvNDyex4+tgAAXKoxASmXvFyrY3JRXuZKplhBqlDBoI+/FRZy25EqVGRnGV2KGp0Pl8O7cZbaHrka0a3ape5Wswkeu4XrxSfdmAFqhPJ8gENETimtEkI+AuDnAMwAvkopfVXxygxO2OPA79+1Hb9/13ZNz7tnsBs3b+3B156ZxHtvWb/6lFKKh16cxtgmP7eLy47epQ3PbTJSGdmUoSE//wIQVhS0mC1zKTBJqBiRA1K0yLO6M5kvw2YxoUulNhNLrWz5RbdMYNXMAPG5rFwvPgmV7yLahUseOaX0p5TSHZTSrZTSz/A4pmB1PnDbFsyni/jJ0fUdrJemkjgTzeH+sSFu52fiLXfDcyYhCfmgCkLOM5e8WKkhV66pmpnAPyIvw+/kO81oOSy65blBm8xX4HFYZNt0reB32rhefNSaMSoX0f2wA7l9Rwjbw248+OTZdXuDf+/wNBxWE960t5/b+Z02C4YDXTgVkbfh2YzIVSjJbpbpcxByteZILod3gU0yX1G99wfv6FbNYiCGn3NPctbC1gjzOgEh5B0JIQQfuG0LTsxnmv73SuTLVfz45Vm8aU8/l2yV5ewIe2Q3z5pJFGAzm5rRM0+ajbM4FAWxqDOgUlc+QEpBTOQrqHNqvStlUqgbJXKPblUsz2fw7klupBa2gBDyjuWt+wexLezGZ396HOVGQdSlfP3ZSWSKVfx2i90W22FHnwfnYjlUaiufey2mEwUM+rtU6VHBbBAeETkTcrUj8lqdIs1pEpSafVYYPqeN+2an2l6z38W3J7mRWtgCQsg7FqvZhE/8+lWYXMzj68+eu+z5VL6CLz5+BnftCuP6TfJ6vKzFjl43KjWKyViu7fdOJwvcp7Az7BYzurusXDogsk1IdbNW+JbpJ/Lq9fVmSAMx+KZMqh3Z+p02ZEvVVYOedknmyyAE3O905SKEvIO5fWcYd18Vxl/+/BQOn09c9NxfPXwS6WIVH/u1naqce3tY6rlyUoa9MpNQT8gBIOi2cbFW2CakWjnZAN+BxpRSpApl7gOML4X3DExNrJXGd5gs8Fl3slCB12FV1AGUJ0LIO5y/vP9a9Psc+L1vHMbzZ6UinS88NoF/fO483nvLKK4e8Kpy3m1hN0wEON1m5kqxUkMsW1Il9ZDBq98Ki5LVjBZ7mv1WlEe4uXINlRpVLYec4XfakClWZdlql1KrU6Q06CLY7IDIyV5J5iuq/5zb4YrtR75R8Dlt+D/vHsO7v3oQv/Xgr+CwmlCs1PGWawfwyV9vvYy/XRxWM0YCTpxuM3OFZayokXrICLrteHVW+VzReE7qbqdqWpyLCYzySDGhgacPLK05ma80N5flkilKo/TUtlYCHO98ACki7zZIxgoghPyKYHuvB49+7HZ841eTmEkUcGBzD96wu1f1hvdypgU1c8hVtVbsiHGIyBdzJQRV7m7H/HceRUFa5Taz6DmZLysW8mYlqsq+/vJmXzxI5cuGKQYChJBfMXTZzHjgNm0biu3odeOxExGUq/WW55tOq1gMxAh57MiUqihWaoraz8ayZfSokCK5nC6rGXaLiU9ErsHmLLA8ulVuUzT7rKjs6zfvfDht0ibyFYwq6MfPG+GRC2Szo9eDap3iXBuZK5OLOdgsJq5Dly8lyCkFcTGrfkROCEHAZcMiByFfyntXe7OTiSKHuwiVOx8yeG4qA9pk2rSDEHKBbFjmSjstbc9Gcxjtcaq6288KjZRmrizmys3NSDXxO/mU6TeFXIOcbICPTaF250OGw2pGl9XMZc3VWh3pYtVQHrkQcoFstoRcjcyV1oX8XCyraERcKyxVd8r/pa3U6kjmK6pUn15KwMWncVaiMdVd7fFjPGdgJlXu1ricgItPRWqqcRfRo/KdTzsIIRfIxmE1Y7TH1fKGZ7UmDW3eHJQ//LkVeETkLLrVYpSXn1PjrMVGp0a1N7m7rGbYLCYu1Z2JfEWzwhofpzL95hQmIeSCK4XtbUwLmk0WUalRbA6qM5KPwaNMn10E1PbIAalSkkdlp5pj6ZZDCGn0iFG+5lS+rFlhTYBTgzKW82+kPHIh5AJFXNXvxbnFHPLl6rqvPRuTIne1I3K7xQyvw6IoIl9s2DLaWCt2pDkU2Kg9BGM5Pk5l+gkNC2t8nPcijNL5EBBCLlDI1f1eUAqcmF8/KmfZLWp75AAQ9NgVCTl7r9rph8BSvxWlczDjubLqG50MP6fGWVoW1vi5XXy0yQ5qByHkAkXsHuwGgJYqKc/FcvDYLZrYFVJRkHyhYRG5Vh45oDw1LpHXxloBpLxsHnZQqjEIQwv8ThtShQqqCu98mh65iMgFVwoD3Q50d1lxrEUh3xxyqTa9Zjkhj11RB8RYrgRbYxqO2rAoelFBlk29TpHIVzTLpJBa2fKxVrTKx2YXDJZ1IpdErowuqxldNnXG6clBCLlAEYQQ7B7w4tjc+kJ+NprTxFYBpCHMSsr0F7NlBN02TS46PCLydLGCWp1qFpEHnDYkC5V1J1StR1yjDVqA351PPFcxlK0CCCEXcODqfi9OzKXXvGVNFyuYSRawXcawZjkE3bZmmb4cYtmSJv44sKzfigKrQotpRsvxOa2NgRjrb3KvRqlaQ7ZU1ewugtfg6ES+bJiBEgxFQk4IuZ8Q8iohpE4IGeO1KEFncfWAF6Vqfc1S/fGZFABgT8NTVxulszsXs2VN/HFgWcm7AiFf2oDT5uLjX9Y4Sy6spaxWaw5wqkjVMjuoVZRG5OMA7gPwJIe1CDqU3QOSOI/PplZ9DRPyvRoLeUS2kJc0ST0EpHRJt92iqLqT+euaZa1waEK1mJO+Gy1TJgFOm8oG2ugEFAo5pfQ4pfQkr8UIOpNtYTfcdgsOTSZWfc34TBoD3Q7N7IqwxwEAiGaKbb+XUopYTruIHGgUq3CIyNVuB8vg0RZWqyZfDG7WyhUYkbcMIeQBQsghQsihaDSq1WkFGmA2EYyN+nHwXHzV14zPpDSzVQAg7JUfkWcasx2DGt3yA9JGXFxRdNtIl9TKpuDQTVBrIXfapNYCSi4+lUbDrI6LyAkhjxBCxlf4c287J6KUPkgpHaOUjoVCIfkrFhiSG0YDOB3JrrhhlylWcDaW08xWASRBMxEgkm5fyFm2S9CjYUTutCqLyHNlOKwmzVLieES3zX42Ggk5IaRRFCT/55zUaBBGu6ybJEspvVuLhQg6mxs3BwAAL0zG8YbdfRc9x4qF9gxpJ+RmE0HQbUdEhrWy0BD/3oY9owV+l63taUvLiecqmvnjAOBxWGAiyjY74zltujUux++0KZqPasRiIECkHwo4sXeoG3aLaUV75eWpJABgz4B2Qg5I9ooca4WJf9irnZAHnDaF6YclBDT09E0mIvUuUbJBq1G3xuUobS2gtR3UKkrTD99KCJkG8BoA/0II+TmfZQk6DbvFjH3DPjx/bvGy5x45voCr+r2K5zu2S9jjkGWtLKQlIe/1auuRFyo1FMry8t7jOe0zKZQ2zopntd80VNoBMXklRuSU0h9QSocopXZKaS+l9A28FiboPG7bEcL4TBrnF5fyyaOZEg6dT+ANu3s1X0/YIzMiT5fgtEkpgVoRUFh1GMsqH4TcLgGF3QT1yMdWfPFp5r5fQUIuECznvusGYSLA9w5PNx97+NgCKAXu2dO3xjvVIeyxYzFXartJ0kKmhLDHrkl5PoNFeHLsFUopotkSQhqldjIka0WBKOa1F3JmrdTr8loLsAvtFVXZKRAsp7+7C7ftCOF7h6dRa/yi/Our89jU48TOXo/m6wl5HaAUbQ82XkgXNfXHgaUui3Ii8nSxkS6psZD3uGyI55RNYdJcyF021KnUMkIOi9kyXDYzHFbjNMwChJALOPO2sWHMpYr48cuzePJUFE+fjuKNe/o1jW4ZYVbd2aZPHkkX0auxkCuJyJvTjDRMlwSki89itiyrcVatTpHIlzWfe6l03mgsW0JQYwurFbQzAQUbgruv6sXV/V78x+8egcNixo5eDz5y5zZd1sLEeCFdxF60ljFDKUUkU0Kv1n6zgsZZzbx3rSNytx3VOkW6UEV3m1ZDMl8Gpdp7zf5lP2c5nTgXcyVDDV1miIhcwBWbxYTvfeg1eOv+QfR1O/DV37lB003D5YRl9FvJlqrIl2vNylCt6O6S5lbK6Uke03As3XKYoC3KsFea49J08MgB+fnvUjM1EZELNgBOmwV//bZ9oJTqYqkwmLC1UxTULAbS2FoxmwgCLpus8XRLg6K1jsiZkJexpc1i7bjGLQUYAYUVqbFsCftH/DyXxAURkQtUQ08RB6S7g4DL1lZE3iwG0rCqkxF022W13Y1lSzAR7W0Kdr5FGRcfvQprfC75LYNrdYp4rqzJqMJ2EUIuuKLp8zown2o9Io80I3Ltb59DMgdGx7IlBFw2mDWskASW7gDazQpa/h4tO0wCgMdugcVEZGUHJfNl1Kn2dz6tIIRccEUz4HNgNllo+fWsqlPr9ENAmmokJyKPZsq6iItfwazRaKYEosNdBCHyWwvENBzI3S5CyAVXNAO+rjaFvASXxlWdDCkibz+dL5YtaV7VCUjWlddhkWWtRLMlBJw2WM3aS5DfaZWVHcQ+p9a+fisIIRdc0Qz4upAuVpEttTZbckGHHHJGyG1HudHvuh1iGk4zupQet12WtRLN6HPxAZby39sl2hDykMb5+q0ghFxwRdPfLYnyXItR+XQij0F/l5pLWhUmxu3YK5TShpDrIy49LpmiqKOQB93y9iLY5xQRuUCgMYM+SZRnWhTymWQBQ36nmktaFSZs7YhMrlxDsaJ9eT6jxy2v/W40o31vGIYk5HI2aEuwmIim/dNbRQi54IqmvyHks8n1M1cK5Rpi2TKGdI7I2xFyvao6GQGXve2CoGaTL50i8pDHjmypimKlvZbBsYzUG0bL/umtIoRccEXT65FGvs2l1o/IZ5J5ANBNyJmwtWOtLPVZ0Su6lSLydroJsiZf+lkrkg3VbobQYq5kyKpOQAi54ArHYjahz+toyVqZSkiv0UvIfY0y/XYiclbspJdNEWh0E0wWWq+UZAKqp0cOtHfnI73emMVAgBBywQagv8UUxOmmkOvjkZtMBD2u9nLJ5xrFTgM+fTJtWITaTgpiVOeLz5KQt+eT65kdtB5CyAVXPAO+rqbgrcVMogCb2aSbwABLueStMp8qwG4x6bYBxxpntbPmpTQ+nYRcxqYy0GiYZcDOh4AQcsEGYMDnwFyyuK6PO53IY8Dn0HUzq93UuPl0Cf3dDt362iw1zpIRkeuVR84uPm3c+eRKVRQqNUP2IgeEkAs2AAPdXSjX6oitIzbTCf1SDxkhT3uNs+ZTBfR162OrAEvNxdoZ3hHNlGA165fG57Ca4XFY2rpg6jGQux2EkAuueIYD0ublVDy/5uskIddno5PBGme1mgUylyqiT6dKVEAqd7eaCRbaaBXMcsj17I4ZajOXfL4p5Pr9rNdCkZATQv6CEHKCEHKUEPIDQoiP07oEAm5sCboBAGeiuVVfU6zUEMuWmgVEetHndaBSoy2VvdfrFAvpIvq69VszIQRhj6O9iFzHHHJG0G1vevWtsHAlCzmAhwHsoZReA+AUgP+qfEkCAV+G/F2wmgnORLOrvqaZsRLQV8ibLQVayHuP58uo1GjzPXrR67U3ha4V9CzPZwQ97Q3x0GvgSKsoEnJK6S8opazDz68ADClfkkDAF4vZhE09LpxdIyKfiGQAAFtDbq2WtSIDbVSisj7renrkgCRu7Qq53ml8Qbe9rc3O+VQRbrtFt7GF68HTI38fgJ+t9iQh5AFCyCFCyKFoNMrxtALB+mwJunB2jYj81IL03LawvkLeTkTOUir19MgBSchbtVZKVcnC0vviE3TbkS5WUaq2VqYvdcU05kYn0IKQE0IeIYSMr/Dn3mWv+e8AqgC+udpxKKUPUkrHKKVjoVCbA/4EAoVsDbtxIZ5HtVZf8fmTCxkMB7rgtOkbcQVcNtgsppby3tkGnP7WigOZUhW5FloFL6QkwR/QeS+iOd2oxQ1PaS/CmLYK0MLwZUrp3Ws9Twh5D4A3A7iLttsRXyDQiC1BFyo1iqlEAZuDrsueP72Qwc5ejw4ruxhCCPq7W5tqNJ8qwGIiuvf/YJFqJFPC5nWsh9nGncaAjhu0wFK/lVi21NJFZSFdwo2bA2ovSzZKs1buAfBfALyFUrp2bpdAoCNbGt73SvZKpVbHuVgO2w0g5IAUYbcSkc+ligh77JrP6rwUtgHYik/OLlB6tRRgsOi6lXmuLDuo18ARuVKP/PMAPAAeJoQcIYR8kcOaBALubA1JUfhKG56TsRwqNYodvfr644yB7q6WBmHMp4xxu88i8laEnF2g+nWOyNn5W7lgxvNlVOtU972ItVBkCFJKt/FaiECgJj6nDQGXbcUURLbRuT1skIjc58BCpoRana4Zbc8mC9g92K3hylaGDapuZcNzJlmA32lFl82s9rLWpMdlg81salo9a8Gi9o7e7BQIrhR29XkwPpu67PGTCxmYiP4ZK4z+7i7U6hSRNaolK7U6phMFjPbo21IAADx2C7qs5tYi8mRB941OQOo02dttx1wLaZ7sezBqDjkghFywgbhhNIBjs2mkixf3zj4xl8ZIwAmHVd8okcH847VyyWeTBVTrFJt6Lt+41RpCiFQU1EJe9myyqLutwujv7mopzXO+kWljBBtrNYSQCzYMN24OoE6Bw+cTzceqtTp+dXYRBwyUkbDk364uMpOLUm7BShk4ehBusShoNlXAoM4bnYyBFjeV59NFEKLfOL1WEEIu2DDsH/HDYiI4eC7efOzl6RTSxSpetyOs48ouhqXmrXXbPxmTNm03GcBaASTbYb0MkEyxgkyx2pyjqjf9vi4spNdvbzyXLCDktsNqNq5cGndlAgFnumxm7B3qvkjInzgVhYkAt24L6riyi/F2WeBxWHA+vnpLgcnFHJw2s65DMJYz5JemMK1WcAUsn2ZkDCEf6JYalK3Xc+VCPG+YC+ZqCCEXbCgObA7g6HQShbJUmv3kqSj2DfvQ7dSnN/ZKEEKwNeTGmcjqQn5+MY9NPS5dW8EuZ1PAiWqdrmlVsLmpAwbxmlnXyNl17iSm4nkMB4SQCwSG4eatQVRqFA+9NI1YtoSXp5O4bYfxWkZsDbnX7NY4uZgzRMYKY6SxlvOLq9cFMqvIKBF5s6/NGjn7pWoNc+kiRoSQCwTG4bbtQbxmSw/+9Kcn8Lv/cAgWE8Eb9/TrvazL2BZ2I5IpXZZhAwC1OsVUPG+IjBUGE7oLawzvOB/PwWY2IWyQcWnsgrLWXcR0ogBKIYRcIDAShBD8yX17Ua7VcXQ6ic/91n7s7DNGIdByWCXqmcjlUflssoBKjRoqIu/vlnq+r+Xrn4nkMBp0wmKQTUO/0wq7xbRmdhC7MBndIzdmc12BQEVGgy58+d1jqFGKO3YaJ1tlOaw4aSKSxf4R/0XPMfti1CCphwBgNhEM+524sIa1cjaaNdRFs9mgbI2InH0eo3vkQsgFGxIj+uLLGQk4G1ONLo9wj8+lAeg/BONSRnqcq3rklVodF+J5vGmvsWysQX8Xptewgy7E83BYTYbJDloNY9zjCASCi7CYTRjtcWFiBWvlyFQSg74u3celXcpIwImpeB4rdbM+v5hHtU6xNWycuwiAbSrnVlwzIAn5SMBpmOyg1RBCLhAYlK0h94ptd49MJbFvxKf9gtZhJOBEplRFIn/5Bi3LwDHaXcS2sBvZUrU5k/NSpuJ5jASMdfFZCSHkAoFB2RZ243w8j2JlaRxZNFPCTLKA/cM+/Ra2CiyL5vzi5XYQE/ItRhPy0NJexKVQSpsRudERQi4QGJTrN/lRq1O8MLlUiXpkKgkA2GdIIV89BfFMJIc+r8Nww4uXNpUzlz0XzZSQL9cwEjBG3vtaCCEXCAzKjVsCsJlNePLU0rDyl6eSMJsIdg/o34f8Ujb1OGEzm/DqbPqy585Es4bzxwEg5LHDY7dgYgULi32OXf1erZfVNkLIBQKD4rRZcGBzAE8sE/IjU0ns6vPoPphhJewWM3YPenHkQvKixymlOBPNYkvQWLYK0GiHEHavaK28MiP1rt89IIRcIBAo4HU7Qji1kMVcqoC5VAEHz8Vx05YevZe1KvuGfTg6k0RlWfOs05EsMsUq9hpgmtFKbAu7MbFCX5tXZlLYEnTB4zBOH57VEEIuEBgYlu/+y+MRfOmJs6hTivfeMqrvotZg/4gfxUodJ+eXPOdnJ2IAgJu3GfMCtC3sRixbQuqSbJvxmRT2GPTicylCyAUCA7Oj142dvR58+sev4lvPX8B91w1iyG/cLAqWTfNSY1MWAJ49s4jhQJdh180yV04v2/CMZUuYSxUNexdxKYqEnBDyx4SQo4SQI4SQXxBCBngtTCAQSB7uP/3eTbh9ZxhmE8GHbjf2vPMhfxeCblvTJ6/VKZ4/F8fNW4zT7/1SWE7+s2cWm48xf3yjROR/QSm9hlK6D8BPAPwP5UsSCATL8TltePBd1+PFT77eMKPdVoMQgn3Dfhw6HwelFMfn0kgVKoa1VQBphNu1Q9149ESk+dj4dGOjc9D4G52AQiGnlC7PM3IBWHtmkkAgkAUhxJCZKivxxj19OL+Yx49ensWPj84CAF5j4A1aALhjVxgvTyex2JgW9PipKLaH3fB2wEYnwMEjJ4R8hhAyBeC3sUZETgh5gBByiBByKBqNrvYygUDQ4bx1/yD2Dnbjkz8cx5eeOIu37h9E2GuMqUCrceeuMCgFHj8ZxfhMCofPJ/D2AyN6L6tl1hVyQsgjhJDxFf7cCwCU0v9OKR0G8E0AH1ntOJTSBymlY5TSsVDI2J3nBAKBfEwmgj96y9VIF6u4YdSPP7lvr95LWpc9A90Iuu146KVpfPGJM3DazLh/bEjvZbXMuvWylNK7WzzWtwD8C4BPKVqRQCDoeK7fFMCPP3IrtoRccFiNbwmZTATvvWUUf/HzkwCAd9400jG2CqCwHzkhZDul9HTjn28BcEL5kgQCwZXA3qHOyPhgfPiObXjt9iC+f3gaH7x9q97LaQulHWz+lBCyE0AdwHkAH1S+JIFAINCHa4Z8uGbIp/cy2kaRkFNKf4PXQgQCgUAgD1HZKRAIBB2OEHKBQCDocISQCwQCQYcjhFwgEAg6HCHkAoFA0OEIIRcIBIIORwi5QCAQdDiEUu0bFhJCopAKiOQQBBDjuBw9EZ/FeFwpnwMQn8WoKPksmyillzWr0kXIlUAIOUQpHdN7HTwQn8V4XCmfAxCfxaio8VmEtSIQCAQdjhBygUAg6HA6Ucgf1HsBHBGfxXhcKZ8DEJ/FqHD/LB3nkQsEAoHgYjoxIhcIBALBMoSQCwQCQYfTUUJOCLmHEHKSEDJBCPm43utRAiFkkhDyCiHkCCHkkN7raRVCyFcJIRFCyPiyxwKEkIcJIacb//XrucZWWeWz/BEhZKbxvRwhhLxJzzW2AiFkmBDyGCHkOCHkVULIRxuPd9z3ssZn6cTvxUEIOUgIebnxWT7deJz799IxHjkhxAzgFIDXA5gG8AKAd1BKj+m6MJkQQiYBjFFKO6rIgRByG4AsgH+klO5pPPbnAOKU0j9tXGD9lNL/ouc6W2GVz/JHALKU0r/Uc23tQAjpB9BPKX2REOIBcBjAvwXwO+iw72WNz/I2dN73QgC4KKVZQogVwNMAPgrgPnD+XjopIj8AYIJSepZSWgbwHQD36rymDQel9EkA8UsevhfAPzT+/g+QfvEMzyqfpeOglM5RSl9s/D0D4DiAQXTg97LGZ+k4qES28U9r4w+FCt9LJwn5IICpZf+eRod+wQ0ogF8QQg4TQh7QezEK6aWUzgHSLyKAsM7rUcpHCCFHG9aL4e2I5RBCRgHsB/A8Ovx7ueSzAB34vRBCzISQIwAiAB6mlKryvXSSkJMVHusMX2hlbqGUXgfgjQA+3LjNF+jP/wawFcA+AHMA/krX1bQBIcQN4PsA/oBSmtZ7PUpY4bN05PdCKa1RSvcBGAJwgBCyR43zdJKQTwMYXvbvIQCzOq1FMZTS2cZ/IwB+AMk66lQWGt4m8zgjOq9HNpTShcYvXx3Al9Eh30vDg/0+gG9SSh9qPNyR38tKn6VTvxcGpTQJ4HEA90CF76WThPwFANsJIZsJITYAbwfwI53XJAtCiKuxkQNCiAvArwEYX/tdhuZHAN7T+Pt7APyzjmtRBPsFa/BWdMD30thU+wqA45TSv172VMd9L6t9lg79XkKEEF/j710A7gZwAip8Lx2TtQIAjZSjzwEwA/gqpfQz+q5IHoSQLZCicACwAPhWp3wWQsi3AdwOqRXnAoBPAfghgO8CGAFwAcD9lFLDbyKu8lluh3T7TgFMAvg95mcaFULIrQCeAvAKgHrj4f8GyVvuqO9ljc/yDnTe93INpM1MM6Sg+buU0v+PENIDzt9LRwm5QCAQCC6nk6wVgUAgEKyAEHKBQCDocISQCwQCQYcjhFwgEAg6HCHkAoFA0OEIIRcIBIIORwi5QCAQdDj/P/g5EqpreaUgAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Create an I/O system simulation to see what happens\n", + "io_saturation = ct.NonlinearIOSystem(\n", + " None,\n", + " lambda t, x, u, params: F_saturation(u),\n", + " inputs=1, outputs=1\n", + ")\n", + "\n", + "sys = ct.feedback(ct.tf2io(H_simple), io_saturation)\n", + "T = np.linspace(0, 30, 200)\n", + "t, y = ct.input_output_response(sys, T, 0.1, 0)\n", + "plt.plot(t, y);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Limit cycle prediction with for a time-delay system with backlash\n", + "\n", + "This example demonstrates a more complicated interaction between a (non-static) nonlinearity and a higher order transfer function, resulting in multiple intersection points." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[(0.6260158833531679, 0.31026194979692245),\n", + " (0.8741930326842812, 1.215641094477062)]" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEGCAYAAABsLkJ6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABX40lEQVR4nO3dd1gU1/7H8fdZeu8gHRVUFGxgb4nG2KKJRr0muZrExPR+c1NM/6XfFNN7Ykwz1cQSazTR2HvBCgpSFel9YXfP749FYhQj4C6zwHk9zz6wy+7Mh4Wd78ycM+cIKSWKoihK26PTOoCiKIqiDVUAFEVR2ihVABRFUdooVQAURVHaKFUAFEVR2ih7rQM0hr+/v4yKimrSa6urq3F0dLRsoItki5lA5WoslatxVK7GsUSuHTt25EkpA85+vEUVgKioKLZv396k16akpBAdHW3hRBfHFjOBytVYKlfjqFyNY4lcQojj9T2uTgEpiqK0UZoXACGEnRBilxBiidZZFEVR2hLNCwBwL3BQ6xCKoihtjaYFQAgRBowDPtEyh6IoSluk9RHAG8BDgEnjHIqiKG2O0GowOCHEFcBYKeUdQohLgAellFfU87xbgFsAQkJCEtauXduk9en1epycnJoe2ApsMROoXI2lcjWOytU4lsgVExOzQ0qZePbjWhaAF4HpgAFwBjyBBVLKf5/vNYmJiVJ1A7U+latxVK7GUbkax0LdQOstAJpdByClfBR4FOCMI4DzbvwVxdJMJkmVwUhltZHKmr9/ragxUlV7v6LaSFXt4wBuTva4O9vj7mS+FZ2qxORRan689manExr/dopyYS3qQjBFOR8pJUUVNaQXVJBeUEFGYQUZBRVkF1XVbtANVFYbqaoxUVFtoLLG/L3lpP/tnouDHW5O9njUFgo3JzvcnRxwd7LD3dne/DMne3zcHGnv70bHAHcCPZwQQhUOpfnYRAGQUv4B/KFxDMXGVRtNHDtVZt7An97QF1TW3S/VG/72fH93R0K8XXBztCfQwxkXRztcHMw3V0c7nB3scHE84/szf+b41/cuDn/dByjXGyitMlBebaCsysCR1Aw8/QIoqzJQpjffyvWnvzdSVlVDud5IVlHlGY8bqDb8vQC5O9nT3t+NDgFudPB3p32AGx1q77s62sRHVWll1H+VYlOqaowczCnheH5F3d58ekEFmQUV5BRXIUmue66jvY4IX1fCfVzoE+VDuK8rEb6uRPi5Eu7jipuTdf69vV0d8Xb9a2wWb0MB0dEhjV5OtcHEqTI9x06VkZpXzrFT5Rw9Vcb2tEIW7cnmzOa5YC/nusLQIcCt7qghxNtFnW5SmkwVAEVTuSVV7DheyM70QnYcLyQpq4Rq4197xkGeTkT4utK/ox9usoqe0WFE+Jk39AHuTuha8MbP0V5HqLcLod4uDIn5+zhdVTXGuqJw7FQZx/LMX3/ZlfW3Ix1Hex3t/WqPGgLc6BTkQf8OfgR5Ojf3r6O0QKoAKM3GYDRx6ERp3cZ+x/FCMgsrAfOGrHuoFzcOiqJXhDfRge6E+bjiXHvaBU73hgjTKn6zcnawIzbYk9hgz789LqUkr6z6b0Xh2KlyDp0oZeWBkxhN5sOGjgFuxAU4MKbKnQEd/PByddDi11BsnCoAitUUVVSzK72obmO/J7OIitqeNIEeTiRG+XDDwCh6R/rQLcQTJ3u7CyxREUIQ4OFEgIcT/Tr4/e1n1QYTR06WsvFoHhtS8llxJI+FB3agExAX6sXAjv4MivYjMdIXF0f1XiuqACgWlJ5fweZj+eYNfnohKbllANjpBF2DPZmaGE6vCG8SIn0I9XZRPV4szNFeR1yoF3GhXtwytCMHDydT6ujHhpQ8Nh7N45M/j/HB2qM42unoFeHNoGhzQege5o2DndaDAihaUAVAuSgpuaUs23eCZUknOJBTAoC3qwMJET5M7BVK7wgfeoR7qV4sGnCwE/Rt70vf9r7cP7IT5XoDW9MK2JhiPkJ4fdURXl9l7n3Ut70vAzv6MSjan85BHi26bUVpOPWpVBpFSsnBnFKWJeWwLOlE3V5+QqQPj4+L5ZLOgXQMcFN79zbIzcmeSzsHcmnnQAAKyqvZfCy/9gghnzWHcgHwc3NkQG0xuLRzIO28VINya6UKgHJBUkr2ZBazLCmH5UknOJ5fgU5Av/Z+zBgQyahu7VSvkxbI182RsfHBjI0PBiCrqJKNtcVgQ0oeS/bmoBNwSedApiaGMyI2UJ0qamVUAVDqZTRJdhwvZFlSDiuSTpBdXIW9TjAw2p/bhnXk8q5B+Lnb3sBZStOFerswJTGcKYnhSClJyS1j4e5sftiRwW1f5eLv7sTVCaH8KzGcDgHuWsdVLEAVAKWOwWhiS2oB3244yebv0jhVqsfRXsfQmAD+c3lnLosNUt0J2wghBDFBHjw4qjP3XRbD2iOn+HZbBp/8mcqHa4/Rt70v0/qEMyYuWPUoasFUAVA4WVLFl5uOM39rOvnl1TjbC4bHBjE6LpjhXQJxt9IVtUrLYG+nY0RsECNig8gtqeKnnVl8ty2dB77fw1ML93NlrxCm9YkgLtRL66hKI6lPdhu2K72QuRvSWLovB6OUjOgSxOSEMMLsS4jr0knreIoNCvR05vZLOnLbsA5sSS3gu20Z/LA9k682p9MtxJNpfcKZ0DMULxd1pNgSqALQxtQYTSzdl8PcDWnszijCw8me6wdGMWNAJJF+bgCkpJRpnFKxdUII+nfwo38HP56e0I1Fu7OYvzWDJxbu57lfDzIuPpipfcLp195X9QizYaoAtBH5ZXrmb03ny83HOVmip72/G89M6MbVCWHqFI9yUbxcHJg+IIrpA6JIyirm223pLNyVzYJdWbT3d2NqYjhXJ4QS6KF6itka9clv5Q7mlDB3Qyq/7M6m2mBiSIw/L03qzrBOAepiH8Xi4kK9eC40nsfGdmXpvhy+257By8sP8drKw0zrG869I9SpRVuiCkArZDRJVh04ydwNqWxJLcDFwY4pCWHcMDCKmCAPreMpbYCLox1XJ4RxdUIYR0+V8fmGNOZvTefnnVlMiffh4Yj2qveQDdCsAAghnIF1gFNtjh+llE9plac1qDaYmL81nY//PEZmYSWh3i48OqYL0/pEqO6bimY6Brjz7FVx3DgoipeXH+LzHSdZlvw7/xnZmasTwtR8BhrS8ghADwyXUpYJIRyA9UKIZVLKzRpmapGklKzYf5KXlh0kLb+CxEgfHhsby8iuQdirKzcVG9EhwJ0Ppyfy8/q9fLG3lId+2stnG1J5ZEwXhnUKUI3FGtByUngJnO5u4lB7k+d/hVKf3RlFvPDrQbamFRAT6M7cG/twifowKTYsvp0rCwbFs3TfCV5efogb5m5jcLQ/j47tQrcQdS1BcxJSarfNFULYATuAaOBdKeXD9TznFuAWgJCQkIS1a9c2aV16vR4nJ9sauuBiMp0oreHT7af4/Wgp3s523JDoz5hOXhY5nLbF9wpUrsZqCblqjJLFB4v4clceZXoTl8V4cmOCP4HuzX/KsiW8X00VExOzQ0qZePbjmhaAuhBCeAM/A3dLKZPO97zExES5ffv2Jq3DPJtUdNMCWklTMhVX1vDeHynM3ZCGTsCsIR24dVhHi3bltMX3ClSuxmpJuc78vxbAzMHtuf2Sjng6N18haEnvV2MJIeotADbRC0hKWSSE+AMYDZy3ALRlNUYT32xJ543fjlBUWcOkXmE8OKoTwV4uWkdTlIvm5eLAo2Nimd4/ktdWHuH9P47y3bYM7hkezbX9InG0V21Z1qBlL6AAoKZ24+8CXAa8rFUeWyWlZOWBk7y07BCpeeUM7OjH7LGxatwVpVUK83Flzr96MnNQe15YepCnFx/g841pPDy6C6Pj2qm2LQvT8gggGJhX2w6gA76XUi7RMI/N2ZdZzLO/HmBragHRge58dkMil3YOVB8CpdWLD/Pim1n9+P1wLi8uPcTtX+8kIdKHV6f0oL2/m9bxWg0tewHtBXpptX5bVmM08c6aFN75PQVvFweeuyqOaX3CVZdOpU0RQjC8SxBDYwL4YUcmLy8/xIS31/PKlB6MjmundbxWwSbaAJS/pOaVc/93u9mdUcSk3qE8PaFbszaEKYqtsbfTcU3fCIbE+HPH1zu57asd3DK0Aw+N6qx2ii6SKgA2QkrJt9sy+L/FB3C01/HOtb24onuI1rEUxWaE+bjyw20DeHbJAT5ad4zdGUW8c00vAtV0pE2myqcNyCvTM+uLHTy6YB8JkT6suG+o2vgrSj2c7O147qp45vyrB3szixj71nq2HMvXOlaLpQqAxtYcOsnoN9axLvkUT1zRlS9m9qWdl9qjUZR/MrFXGAvvHIynsz3XfrKFj9YdxRauaWppVAHQSGW1kTc3nGTm59vxd3di0V2DuGlwezVEs6I0UOd2Hiy8axCXdw3ihaWHuO2rHZRU1Wgdq0VRBUADezOLGPfWnyw+WMQtQzuw8K5BdGnnqXUsRWlxPJwdeO+63jw+LpbfDuYy4e31HMwp0TpWi6EKQDMymiTvrElm0nsbqawx8srYMGaPjcXJXo2LrihNJYTg5iEdmD+rPxXVRia+t4GfdmRqHatFUAWgmVTVGLn9qx28uvIIo+PasfzeofQKURe0KIql9G3vy5J7BtMz3Jv//LCHRxfso6rGqHUsm6YKQDMoKK/m2o83s+rgSZ68oitvX9NLTdCiKFYQ6OHMVzf147ZhHZm/NZ0pH2wio6BC61g2SxUAK0vPr+Dq9zeSlF3Ce9f2Zubg9mooB0WxIns7HY+M6cLHMxJJyy/nirfXs+7IKa1j2SRVAKxoT0YRk97fQGFFNd/c3I8x8cFaR1KUNmNk1yCW3D2YYC9nbv5iO1tTC7SOZHNUAbCSNYdOMu2jzTg72PHjbQNJjPLVOpKitDmRfm7Mn9WfMB8Xbp63jSMnS7WOZFNUAbCC+VvTmfXFDjoGurHgjoFEB7prHUlR2iwfN0e+mNkXZwc7rv9sK9lFlVpHshmqAFiQlJLXVx7m0QX7GBLjz3e3DCDQQ13VqyhaC/NxZd7MvpRVGbj+s60UV6gLxkAVAIupMZp48Ie9vLUmhWl9wvlkRiJuFpymUVGUixMb7MmHMxI4nl/BzV9sU11EUQXAIvQGIzfP285POzN5YGQnXpwUr4apVRQbNLCjP6//qwfbjxdyz/xdGE1te/wgzbZSQohwIcTvQoiDQoj9Qoh7tcpyMUwmyQPf72HtkVO8NCmee0bEqG6eimLDrugewpNXdGXlgZM8uTCpTQ8ip+U5CgPwHynlTiGEB7BDCLFKSnlAw0yNIqXkuV8P8uveHGaP7cK0vhFaR1IUpQFuHNSekyV6Plh7lHaeztw9IkbrSJrQckrIHCCn9vtSIcRBIBRoMQXg4z+P8dmGVGYOas+sIR20jqMoSiM8PLozuaVVvLbqCAEeTiS2wZ7awhYOf4QQUcA6IE5KWXLWz24BbgEICQlJWLt2bZPWodfrcXJyusikf1mdUsKLf+RwSQcPZl8ajK4Jp30snclSVK7GUbkax5ZyGUySx1dmsjOrgseHBTI02kfrSOewxPsVExOzQ0qZePbjmhcAIYQ7sBZ4Xkq54J+em5iYKLdv396k9aSkpBAdHd2k157tz+RT3Dh3G32ifPl8Zp8mj+ZpyUyWpHI1jsrVOLaWq1xv4JqPN3M4p4T5tw6gd4RtFQFLvF9CiHoLgKZdVYQQDsBPwNcX2vjbiqSsYm77cgfRge58OCNBDeWsKC2cm5M9n93QBz83e2Z+vo2U3DKtIzUbLXsBCeBT4KCU8nWtcjRGen4FN8zdhrerI/Nm9sXTWY3oqSitgb+7Ey+NDsNeJ7j+s62cKtVrHalZaHkEMAiYDgwXQuyuvY3VMM8/yi/Tc/3crdQYTcyb2YcgT3WFr6K0JiGejsy9oS+5pVW8suKQ1nGahZa9gNYDLaLDfI3RxM1fbCe7qJJvZvUjOtBD60iKolhBfJgXNwyM4pP1qVw/MIpuIV5aR7IqdblqA7y9Opld6UW8NrUHCZFtsK+YorQhdw2PwdvFged/PdjqLxJTBeACdqUX8u4fR5nUO5QruodoHUdRFCvzcnHg/pGd2Hg0n9UHc7WOY1WqAPyDimoDD3y/h3aezjw9oZvWcRRFaSbX9I2gY4AbLyw9SI3RpHUcq1EF4B+8sPQgqXnlvDKlu+rxoyhtiIOdjsfGxXIsr5yvNh/XOo7VqAJwHn8czuWrzencPLg9Azv6ax1HUZRmdmnnQAZH+/PGb8kUVVRrHccqVAGoR2F5NQ/9uJdOQe48OKqz1nEURdGAEILHxsVSUlXD22tStI5jFaoAnEVKyeMLkyisqOb1qT1xdlBX+ipKWxUb7Mm/EsP5YlMaqXnlWsexOFUAzrJoTza/7s3hvss6ERfauvsAK4pyYQ9c3glHOx0vLTuodRSLUwXgDLklVTzxSxK9I7y5daga3llRFAj0cOaOS6NZsf8km4/lax3HolQBOMNba5KprDHy2tSeakpHRVHq3DS4PSFezjz36wFMrWgaSbWVq5VZWMF32zKYmhhOe383reMoimJDnB3seHhMF5KySliwK0vrOBajCkCtt1enIITgruG2M065oii2Y3z3EHqEe/PKikNUVBu0jmMRjSoAQgidEMLTWmG0kpZXzo87M7m2bwTBXi5ax1EUxQbpdILZY7pwskTPr3tztI5jERcsAEKIb4QQnkIIN8zz9R4WQvzX+tGaz1urk3GwE9xxaUetoyiKYsP6RPni5+bIhpQ8raNYREOOALrWztN7FbAUiMA8jn+rkJJbys+7s5gxIIpADzXGv6Io56fTCQZG+7PhaH6rGCm0IQXAoXbqxquAhVLKGqDl/+a15vyWjIuDner2qShKgwzq6MepUn2rmDqyIQXgQyANcAPWCSEigRJLrFwI8ZkQIlcIkWSJ5TXWwZwSft2bw8xB7fFzd9IigqIoLcygaPPYYK3hNNAFC4CU8i0pZaiUcqw0Ow5caqH1fw6MttCyGm3OqiN4ONsza4ja+1cUpWHCfV2J8HVlfUrLvyjsvFNCCiH+LaX8SgjxwHmectETuUsp1wkhoi52OU2RWVjBygMnuWd4NF6uaqhnRVEablC0H0v25GAwmlr0RaP/NCfw6auhNJ0AVwhxC3ALQEhICCkpTRuVT6/X/+213+4xV+8+AcYmL/NinZ3JVqhcjaNyNU5ryNXBzUCp3sCyLfuJDbRu13Frvl/nLQBSyg9rvz5z9s+EEI5WSVN/jo+AjwASExNldHTTLtRKSUnhzNeuX5JN7whvhvTqapGclshkK1pjrpKqGpJPlnHsVBnlegN6g6n2ZkRf89f3BpPEz82RQA9nAj2dCPBwIsjTmUAPJ9yd7BFCWDSXNalcjdOYXD7t9Dz/ew7pehfGW/l3seb79U9HAAAIIf4AbpBSptXe7wN8AvSwSqJmcORkKYdOlPL0eO02/op1FFfUkJxbSnJuGUdOlpKSW0byyTJOlFTV+3x7ncDJXoeTgx1O9jp0QpBfrqeq5txpAN0c7YgP86JPlC+JUb70ivBWM8W1UX7uTsQGe7I+OY87L7W9YtZQFywAwIvAciHEW0AoMAa40aqprGzR7mx0AsapSd5bPCklybllrEg6wYoDJ0jK+quDmouDHdGB7gyM9iMm0IOYQHc6Brrj7eKAk4MORztdvedvpZSU6g3klujJLakit1TPyZIqsooq2Z1RxHt/HMVoSkEI6NLOk04+OqbizYAOfuh05x4hKK3ToI5+fLH5OFU1xhY7b8gFC4CUcoUQ4jZgFZAH9JJSnrDEyoUQ84FLAH8hRCbwlJTyU0ss+3yklCzck8WgaH8CPFTXz5bIZJLsyihi5YETrNx/sm6ijt4R3vx3VGdigz2ICfQg1NulSRtkIQSezg54OjsQHeh+zs/L9QZ2ZxSxLa2A7WmFrDiSz8IDWwj3dWFKQjiTE8II8VZDirR2g2L8+WR9KtvTChkc0zKnjW3IKaAngKnAUKA78IcQ4j9Syl8vduVSymsudhmNtSujiIyCSu4ZHtPcq1Yu0r4TFczdt49VB06SW6rHXicY0NGPmwa35/KuQQR6Ns+V3G5O9gyK9q/rD77/0BGSK934fnsGr686wpzfjjA0JoBbh3ZgYHTL3DAoF9Y3yhd7nWDD0bzWWwAAf6CvlLIS2CSEWI65DeCiC4AWFu3OxtFex6i4dlpHURpo87F85qw6wpbUAlwc7LikcwCjurXj0i6BeLlofw7eyV7HVb1CuapXKOn5Ffy4I4Pvt2dy7SdbGNk1iNljY9UQ462Qm5M9vSK8W/QFYQ05BXTvWfePAyOtlsiKDEYTS/bmMKJLoGq8awG2phYwZ9URNh3LJ9DDiTsHBHLXmN64ONru+dYIP1ceuLwzd1wazWcbUnl3TQqXz1nLDQOjuHtEjPq/a2UGRfvz5upkiitqWuT1RA05BRQAPAx0BeqOsaWUw62Yyyp2ZRSRV6bnCtX4a9O2pxUw57cjbEjJJ8DDiSev6Mq1/SLIPJ5q0xv/Mzk72HHHJdFM7h3GqysP88n6VFYfzOXj6xPpGHBuu4LSMiVE+iAl7M8pZmDHlncaqCGXsH0NHATaA89gHhdomxUzWc2ejCIA+rb31TaIUq9d6YVM/3QLkz/YxOETZTw+LpY/H7qUmYPbt9heFoGezvxvcg++ndWf4soarnp3A2uPnNI6lmIhutrrQnT1XB/SEjSkAPjV9sypkVKulVLOBPpbOZdV7MsqJtjLWfX+sTFGk+SN344w6f2NHMgu4bGx5g3/zUM6tNgN/9n6dfBj4V2DCPV24ca5W/l2a7rWkRQLqDaarxdxtG+Zw0E0pBG4pvZrjhBiHJANhFkvkvXsyywmLtRL6xjKGQrKq7n32138mZzHpN6hPHtlHG5ODfm3bHnCfFz56faB3P71Th77JYlwX9e6nkRKy1RtqC0ALXQ8oIakfk4I4QX8B3gQcw+g+62aygrKq40cyyunuyoANmNneiHj3vqTLakFvDgpntem9Gi1G//T3JzseffaXnQMcOOOr3fWXcOgtEynC4BTCz0CaMhw0EuklMVSyiQp5aVSygQp5aLmCGdJKfl6AOLCVAHQmpSSzzek8q8PN2FvJ1hw+0Cu6RtR7zg7rZGHswOfzOiDEPCf73e3ipml2qq6I4DWWgBaiyOnzGPBxKsjAE2V6Q3cNX8XTy8+wLBOASy5a0ibPC0X4efKg5d3Zmd6kWoUbsFaehtAy0zdBEfyqwjxcsZfzfylmZziSia8s55l+3J4eHQXPpqe2CL7TlvK1MRwQr1dmPNbstZRlCY6fQTg0FrbAIQQraIbRnJeVZvc07QVldVGZn2xndwSPV/d3I/bL+nY5gdOc7TXMX1AJHsyisg9z2ilim2raQNHAClCiFeEEC127OTKaiOZxTWqAGhESsmDP+5hf3YJb07r2SIvmLGWfrXXpGw/XqhxEqUp9G2gF1B34AjwiRBisxDiFiGEp5VzWVRhRTUAgar/vybeXpPCr3vNp31GxAZpHcemdAsx75QcOVmqcRKlKVp9N1ApZamU8mMp5UDgIeApzNcEzBNCtIiZEEqrDIC594XSvJYn5fD6qiNM6hXKrUM7aB3H5pzu+GTXRnpAtTbVRhMOdqLFns5sUBuAEGKCEOJn4E3gNaADsBhYauV8FlFaZb6WzcO5dfcxtzUHsku4/7s99Az35oVJ8W2mm2djFFWY/zdbyhhHyt9VG0wtdu8fGnYlcDLwO/CKlHLjGY//KIQYap1YlvXXEYAqAM0lr0zPrC+24+XiwEfTE1rNkA6WtvlYPgCJUWp8qpaoxmjCoYU2AMMFjgBqewB9LqW86ayNPwBSynsuZuVCiNFCiMNCiBQhxCMXs6x/UlJ3BKBOATUHKSV3fL2T/HI9H89ItNhELb5vvWWR5diSH3Zk4uvmSFxIi2pWU2q19COAf0wupTQCl1pjxbXF5V3Mcwx3Ba6xVk+j00cAnuoIoFmsS85ja2oBT1zRlXgLXnnt+/bbFluWLfgz+RTrjpzitmEd6p2bWLF95dVGnBxa7t+uIVvEjUKId4DvgLqBS6SUOy9y3X2BFCnlMQAhxLfAlcCBi1zuOVQjcPP6dH0qAR5OTE5okWMGNtjJkio+XZ+KrCrl4famRm3Es4oque/b3XQMcGPGgCjrhVSsxmiSbDqaR78OflpHabKGFICBtV//74zHJHCxE8KEAhln3M8E+p39JCHELcAtACEhIaSkpDR6Rek5p7ATkHn8mE01ROr1+ib9PtZ2MbnSCvWsO3KKGxP8yUhLvegsvm+99fc9/9q/X8Hdd1Nwz0Wdgbxod/xynCN5VcT4OTL12NEG/28dL9TzyPJMKqtNvDomlMzjF/8+1ac1/n9ZU2Nz7c2pIK+smt7+wuK/T6neQFp+Jc/+fpIbennTt0xvlVEMGjIlpFVOAQH1fVrOGRVLSvkR8BFAYmKijI5ufM9TpwN6XByKiImxrYngU1JSaMrvY20Xk+uTn/biZK/j7rG98HVzvPgwb71lvoF54187cJpv7U1LmSUpjOsezG293Bv0v1VtMPHl5uO8siIdD2cHvr+tv1UvTmyN/1/W1NhcXx3Yj5O9jmnD4i0+iu2Xm9J4culRJHCizMD7O8uZN7ObRdcBDTsCoHYegG78fUrI/zv/KxokEwg/434Y5rkGLM7D2Z6KGhMmk2yx/XVbgrwyPQt2ZTE5IcwyG//TNrwFseMttzwLmZIQxrxNx3EwePNISATtvOpv7M4qqmTJnmy+2HScrKJKhncJ5IWJ8ed9vmL7TCbJ8qQTXNI5wCpDmP+7fyQLd2ez/XghLg463prYy+LrgIbNCfwB4Iq5MfgTYDKw1QLr3gbECCHaA1nANOBaCyz3HD6ujpikuS2gLQ8+Zm1fbT5OtcHEzEHtLbfQw8tg1RNQU0HB3Xdrvtd/pieuMPdZ+GLTcRYdXE3ndp50CnLH3ckek5RkFlZyPL+C9IIKAPpE+fDcxDgu6RRgU6cilcbblVHEiZIqHonrYpXlCyG497IYpn+6lXBvZ7xcrLPdalAbgJSyuxBir5TyGSHEa8CCi12xlNIghLgLWAHYAZ9JKfdf7HLrc3pvtKCiWhUAK6mqMfLV5uNc2jmA6EALTXpelguL7oagOBj8AAVh6TZVAOztdDxzZRzDw3TsKrRnx/FCdqYXUqE3IgSEeLsQF+rJjAGRjIgNor2/m9aRFQtZnpSDo52O4bGBVlvH6XmGrdl7sSFLrqz9WiGECAHyMU8Qf9GklEtphquJfU4XgPJq9SG0kkW7s8krq+amwRYa7sFkgp9vBX0pXL8Y7C14SsnCQr0cGZZge+e0FeuQUrJ03wkGx/jjacWehXll5kmsvJytdxFlQ/qtLRFCeAOvADuBNOBbqyWyAl/XvwqAYh1rk08R6u3CoGgLdYlb/xocXQOjX4LAWMssU1EsICmrhKyiSkbHtbPqenJLzAXAz1XDIwAp5bO13/4khFgCOEspi62WyAp83MxVulAVAKs5WVxFuK+LZc5tH1sLv78A8VMg4YaLX56iWNDSpBzsdYLLu1p3ZNvc0iqc7HW4OVrvQrOG9gIaCESdfr4QAinlF1ZLZWFntgEo1nGipIrESJ+LX1BxFvw4E/xi4Io3/houU1FsgJSSZftyGNDRD29X656WzCmuIsjT2aodBhrSC+hLoCOwGzDWPiyBFlMAXBzscLAT6gjASqSU5JboCbrYMX8M1fDDDVBTCf/6Epws1JisKBZy6EQpafkV3DK0o9XXdexUOR0CrNtm2ZAjgESgq5TynIu0WgohBAFu9mQUVmgdpVUqrKih2mi6+AKw8nHI3ApTPoeAzhbJpiiWtCzpBDoBl3ez7ukfk0lyLK+MAR2tO8xEQ04uJQHWbe1oBp38ndmT0aKaLlqMk7Xz2V7UhU37foStH0L/O6HbRAslUxTLWrYvh77tfa0yLMOZsosrqaox0THAukfBDSkA/sABIcQKIcSi0zerprKCLgHOZBVVkluqJt+2tBO1BSDIs4kfityD5v7+EQNg5DMWTKYolpOSW0pybhlj4oKtvq5DOeYpQjsFWbcANOQU0NNWTdBMOgeY9073ZhRzWVd1Cb4l5dYVgCa8r/pS+G46OLrD5Llgpy7UU2zTDzsyAaze/RNgd0YRdjpBtxAvstILrLaehnQDXWu1tTejGH9n7HSCPZlFXGbl7lttzYlic3/lQI9GFgApYdE9UHAUZiwCT+vvWSlKUxzILuHTP1O5qmfIxbd1NcDujCK6tPOw+lSh5z0FJIRYX/u1VAhRcsatVAhRYtVUVuBsr6NzkAe7M4q0jtLqlFcbcLTT0ehx9rZ9AvsXwPDHof0Qq2RTlItVYzTx3x/34O3qwFPjLT8i59lMJsmejCJ6hntbfV3nLQBSysG1Xz2klJ5n3DyklC1y/roe4d7sySjCZGqxHZpsUrcQT6qNJg6dKG34i7J3w4rZEHM5DLrfatkU5WJ9uPYo+7NLePbKuLphZaxpf3YJpXoDiVEWuK7mAi7YCCyE8K3n1iJP1PYM96KkykBafvmFn6w02OkJzXemFzbsBVUl5v7+bgFw1Qega7lT6imt25GTpby1OoVx8cGMiW+eU5Trkk8BMCQmwOrrasgnbydwCjgCJNd+nyqE2CmESLBmOEvrGW6uqNvSrNeo0haFeDnTztOZ7WkNKABSwuJ7oSgdJn8Gbi13Oj2ldTMYTfz3hz24O9vzzJXWP/Vz2tojp+gW4mn1rqbQsAKwHBgrpfSXUvphnsT9e+AO4D1rhrO0TkHuhPu68Ou+E1pHaVWEECRE+bDjeAMKwK4vzef9L50NEf2tH05RmuiT9ansySzm6QndmmVjDFBaVcPO44UM7WT9vX9oWAFIlFKuOH1HSrkSGCql3Aw0z7tiIUIIxncPYUNKHvm1Q60qlpEQ4UNWUSUniv/hOotTh2HpQ9B+KAxW5/0V25WSW8brq44wqlsQ47s3X++01QdzMZgkI7pYb56BMzWkABQIIR4WQkTW3h4CCoUQdoDJyvksbnyPEIwmydIkdRRgSacbrM57FGDQw083gYMLTPwIdNbt3qYoTWU0SR76cQ+ujnY8e1Vcs87etmRvDsFezvSOsH4DMDSsAFyLeb7eX4CFQETtY3bA1KasVAgxRQixXwhhEkIkNmUZTdWlnQfRge4s3mOV6YfbrNhgT5wddGw/fp72lTXPwYl9cOU7qr+/YtPmbkhlZ3oRT43v2vhrWy5CSVUN646cYmx8cLPNXX7BAiClzJNS3i2l7CWl7CmlvEtKeUpKWS2lTGniepOAScC6Jr6+yYQQTOgRwra0AnKKKy/8AqVBHOx09AjzZmd9RwDH1sLGt9nhNZb4KY8QHR3NPffcQ33jC9bU1HD99dcTHx9PbGwsL774IgClpaWMHz+enj170rNnT/z9/bnvvvvOm2fNmjWMHz+e+Ph4BgwYwBtvvIHRaKz3ufn5+Vx66aW4u7tz1113nXeZ//3vf+nSpQvdu3dn4sSJFBUV/eN7orQ8aXnlvLryMCO6BHJVz9BmXffyfSeoNpoY14ynnBrSDTRACPGKEGKpEGLN6dvFrFRKeVBKefhilnExrugejJTw694crSK0SolRPuzPLqGi2vDXg5VF8Mvt4BfN7d8k89FHH5GcnExycjLLly8/Zxk//PADer2effv2sWPHDj788EPS0tLw8PBg8eLF7N69m927dxMZGcmkSZPqzfH+++/zv//9jxdffJF9+/bx22+/UVFRwbRp0+otOs7Ozjz77LO8+uqr//j7jRw5kqSkJPbu3UunTp3qipPSOpik5KGf9uJgp+P5ifHNeuoHYP62dKID3enVDBeAndaQsYC+Br4DrgBuA67H3BW0WQghbgFuAQgJCSElpWkHHXq9/m+vjfFz4oetqVwSrF0zxtmZbEVTc8W4VWMwSV5dtINre5q7dwZufBKP0hPsSHyd/IJnCQgI4OjRo1x++eXMmzePmJiYvy3j5MmT5ObmcujQIUpLSxFCkJeXh8FgqMuVlpZGdnY2wcHB5+RMS0tj3rx5fP7559jb29f9fOrUqWRlZfHOO+8wZsyYc7K3a9eODRs2UFxcfN7fvUOHDqSlpQEQGRnJ8uXLSUlJaXV/R2uz1VwL9uaxNbWAB4e2o+xUJinNtpWD1AI9u9KLuK2f+fNxJqu+X1LKf7wBO2q/7j3jsbUNeN1vmE/1nH278ozn/IG5l9EFc0gpSUhIkE2VnJz8t/sf/JEiIx9eIg/llDR5mRfr7Ey24mJy3frFdtnl8WUyu6hCygOLpXzKU8o1z8tt27bJESNG1D1v3bp1cty4cee8vrq6Wv7rX/+S/v7+0tXVVX744Yfn5HrmmWfkf/7zn3rX/+ijj8qVK1dKo9Eo77jjDtm7d2/51FNPyXvuuUcWFBTICRMmnDf73Llz5Z133tmg3/OKK66QX3755d9y2RqVq+HS88tl58d+ldM/3SJNJlOzr/+phUkyevavMr9Mf87PLPF+AdtlPdvUhjQC19R+zRFCjBNC9MLcKHyhwnKZlDKuntvChpcn65maGI6rox3v/2F7eyIt2WPjYjFJyduLN8OS+6BddxjyYL2nXuo7xN66dSt2dnZkZ2eTmprKa6+9xrFjx/72nG+//ZZrrrmm3vXv2bOH/v37s3jxYhwcHNixYweenp4UFxfj4+NDaWkjhqs4j+effx57e3uuu+66i16Wor3Sqhru+XYXOiF4aVLzn/oprqjh++0ZjO8eUjd9bXNpSAF4TgjhBfwHeBD4BGjxnbh93By5rl8Ei/Zkk56vZgqzlHBfV24d2oHBh1/AVFkEEz8Ae0fCwsLIzMyse15mZiYhISHnvP6bb75h9OjRODg4EBgYyKBBg9i+fXvdz/fs2YPBYCAhof6L0KWU2NnZcejQIUaPHg1Qd8pHr9fj5HRxl67MmzePJUuW8PXXXzf7hkKxvILyaq79eAv7Mot5cGg7Qrxdmj3DV1uOU1FtZNbQDs2+7ob0AloipSyWUiZJKS+VUiZIKS9qQhghxEQhRCYwAPhVCLHiQq+xhpuHdMBep+P9tUcv/GSlwe4K2MNYu63Mc7oWY0BXAIKDg/Hw8GDz5s1IKfniiy+48sorz3ltREQEa9asQUpJeXk5mzdvpkuXLnU/nz9//nn3/gHi4+PZtGkTnTt3ZuXKlQCsWLECKSUvv/wykydPbvLvtXz5cl5++WUWLVqEq6trk5ej2IYTxVVM/XATR06W8uH0BIa292j2DHqDkc83pjEkxp/Y4OYfY7MhvYDaCyFeF0IssNSMYFLKn6WUYVJKJyllkJRy1MUsr6mCPJ2ZkhjGTzsy//kKVqXhKgpwXPUoRT7xPFd4Gd9uS6/70fvvv8/NN99MdHQ0HTt2rNszX7RoEU8++SQAd955J2VlZcTFxdGnTx9uvPFGunfvXreM77///h8LwPXXX8/s2bMZN24clZWVJCQkUFRUxP79+3F3d2fmzJn1vi4qKooHHniAzz//nLCwMA4cOADAzTffXHcEctddd1FaWsrIkSPp2bMnt91228W9V4pmjueXM/mDjZwormLezL6MiNVmjpCfdmRxqlTPrc0wyXx9GtIL6BfgU2AxLfDK3wu5dWhHvt2Wwcd/HuOJK7pqHaflW/EYVBXhNeMX+iwq49UVhxkXH4y3qyOJiYkkJSWd85IJEyYwYcIEANzd3fnhhx/Ou/iz2wPO1rVrV6ZMmcK0adOYM2cOERERVFZWEhMTw9ChQ8972uZ0756zffLJJ3Xf22LPFaXxDp0oYfqnWzEYTXwzqx/dw7w1yVFVY+TtNcn0ivBmULQ2gyI2pA2gSkr5lpTydynl2tM3qydrJhF+rkzoEcI3W9IpKK/WOk7LdvR32PMNDLwH0S6epyd0o7iyhjmrjjRrjAcffJCbbrqJWbNm0atXL8aMGUNZWRmhoc17YY9ie3alF/KvDzejE/D9rQM02/gDfLMlnZziKv57eWfN2pMacgTwphDiKWAlUDeCmpRyp9VSNbM7LunIz7uy+Gx9Kg+O6qx1nJapusLc68e3Awx7CIAu7TyZ3j+SLzcf55p+EXRp13znOMeOHcvYsWObbX2K7duQksesL7YT4OHEVzf1I9xXu3accr2B9/5IYWBHPwZG+2uWoyFHAPHALOAl4LXa2z9fMtnCxAR5MC4+mE/WHyOjQPUIapK1L0FhGox/0zzgW637R3bCy8WB2Qv2UVVT/1AMimJtK/ef4Ma52wj3ceWHWwdouvEHeOf3FPLKqvmvxjucDSkAE4EOUsphtb2ALpVSDrd2sOb22LhYdELw1KL99fZZV/5Bzh7Y+A70mm4e6vkM3q6O/N+VcezKKOLmeduprFZFQGleC3ZmcvvXO+ka4sl3t/YnsBkmdf8nqXnlfPpnKlf3DqNXM436eT4NKQB7AG8r59BciLcL91/WiTWHclmx/6TWcVoOowEW3QOufnD5s/U+ZXyPEF6Z3IMNR/O4ad62v48VpChWNG9jGg98v4d+7X35+uZ+eLs274VW9XluyQEc7XU8PFr7080NKQBBwCEhxApLdQO1VTcMiqJLOw+eWbyfcr3aSDXIlg8gZzeMeRlczr83MzkhjNen9mDzsXxunLtNvb+KVUkpeWdNMk8t2s/IrkF8dkMf3Jwa0uRpXb8dOMnqQ7ncMyJa8yMRaFgBeArzaaAX+KsN4DVrhtKKg52O566KI6e4ijdXJ2sdx/aVZMPvz0On0dBt4gWfPrFXGHP+1ZNtaQXcOHcbZaoIKFYgpeSFpQd5deURJvUK5f3reuPsoP0ERMWVNTz2yz46B3lww8D2WscBGtALqDV1+WyIxChfpvUJ59P1qUzqHdqsPVdanN+eBpMRxvwPGtiN7cqeodjpBPd+u5sbPtvK3Bv74OHsYN2cSptRVWPkyYVJfL89k+sHRPLU+G7NNrnKhTz/6wHyyqr5eEYijvYN2fe2vvOmEEKUCiFK6rmVCiFKmjNkc3t4dBe8XBx4/OckTCbVIFyvjG2w9zsYeBf4RDbqpVd0D+Hta3qxO6OIGZ9tpaSq5sIvUpQL+ONwLpfPWcf32zO5e3g0T0+wnY3/H4dz+X57JrcO7aDptQdnO28BkFJ6SCk967l5SClb9W6xj5sjs8fGsv14oRonqD5SwvJHwD2oyZO7j40P5p1re7Mvs5jpn26luFIVAaVpThRXccfXO7hh7jbs7QTf3NyP/2h4cdXZiitrmL1gHzGB7tx7WcyFX9CMbOM4xAZd3TuU8T1CeG3lYTYfy9c6jm3Z9wNkbYcRT4FT0wfQGh3Xjvf/ncCB7GKmf7qF4gpVBJSGMxhNfLo+lRGv/cHqg7k8eHknlt07RNMLq84mpeSRn/aSW6rn1Sk9cLLXvi3iTKoAnIcQghcnxRPl58Y983dxqlR/4Re1BdXlsOopCOkFPc4/KFtDjewaxAf/TuBQTinXfbpZDcqnNMiu9EImvLOBZ5ccoE97X1bdP4y7hsfY3Ab2qy3pLEs6wX9HdaZHM0712FCqAPwDdyd73r2uN8WVNdz33S6Mqj0ANrwFpdkw+iXQWebfZ0RsEB9OTyAlt4zLXl/LF5vS1Hut1Ku4oobZP+9j0vsbKSiv5v3rejP3hj5E+Nne8NwHskt4dskBLukcwKwhzT/Wf0OoAnABscGe/N+V3diQks/ba9p419DiTNjwJnSbBBH9LbroS7sEsuK+ofQM9+bJhfu5+v2NHMxp1X0NlEaQUrJgZybDX/uD77ZlMHNQe377zzDGxAfbzLn+MxWWV3PrV9vxdnHgtSk9bKYx+myqADTA1MRwJvUK5c3VyaxPztM6jnZWPQVIGPl/Vll8pJ8bX97Ulzn/6kF6QQXj317PS8sOqeEj2riU3FKu+XgzD3y/h3BfVxbdNYgnruiKuw1c2FUfg9HEXfN3crJYzwfTE/Bzv7hZ6KxJkwIghHhFCHFICLFXCPGzEMJbixwNJYTguYlxRAe4c993u8gqqtQ6UvNL3wJJP8LAe8A73GqrEUIwsVcYqx8YxsReoXyw9iiXv7GWdUdOWW2dim2qrDbyyopDjHnzTw5kl/DCxHgW3D6QbiFeWkf7R88vPciGlHyenxhHb43H+rkQrY4AVgFxUsruwBHgUY1yNJiroz3vXdcbfY2J6z/bSlFFG5o7wGQyd/v0CIZB9zbLKn3cHHllSg/mz+qPg07HjM+28sLv2eSVqcb4tmDNoZOMnLOWd38/yvgeIax58BKu7Rdhs6dSTvt2azpzN6Qxc1B7piRab0fJUjQpAFLKlVLK0+MAbAbCtMjRWDFBHnw0I5H0/Apmfr6t7Zya2PsdZO+Ey54GJ/dmXfWAjn4svXcI9wyPZl1qKSNeW8v32zLUiK2tVGZhBbd9uYOZn2/H2cGO+bP68/rUnvjb8GmU01YfPMljvyQxtFMAs8d2ufALbIDQ+oMkhFgMfCel/Oo8P78FuAUgJCQkYe3apo1ModfrcXKyzD/RutRSnl2dTb9wN54ZaR7aQOtMlnRmLlFTQeSiiRhcg8gc/TkI7ZqNkk+W8u7WQpJOVtK9nQv3D25HuLf2ozu2hL+jLTk7l9Ek2ZZZzq+HitiSUY69TvDvXn5MiffFwa759vgv5v06cLKS/y7NINLHidfGhePiYLnPiSX+jjExMTuklIlnP261AiCE+A1oV8+PHpNSLqx9zmNAIjBJNiBIYmKiPD1Bd2OlpKQQHR3dpNfW58vNx3nilySmJobx8tXdm9QTwdKZLOVvuVY/C3++Cjf9BuF9NM/VoUNHvtuewYtLD1JVY+L2Szpy05D2eGo4nlCL+DvakNO5Mgsr+H5bBt9vz+RESRX+7k5MSQzjun4RhPk0f7fOpr5fKbllTP5gI94uDvx4+0CLH61Y4u8ohKi3AFitGV1KedkFAl0PXAGMaMjG39ZM7x/JqZIq3lqTQqCHc+ucSrIoHTa+DfFTNN/4n6bTCa7pG8GI2ECeXXKQN1cn89G6Y1zRPZhr+kXQK9zbJrsFKmY1RhN/ppby7LqtrEs2N+wPjQng6QndGBEbiINdy+qYmFFQwYxPt2CvE3wxs1+LOFV1Jk36UQkhRgMPA8OklC12Dsb7R3biVJmed35Pwd/dkRsG2cYQrxaz6knzKZ/LntY6yTkCPZx5+5pezBrSnvlb01m4O5sfdmTSOciDa/qGM7FXGF6uapRRW3E8v5xvt2Xww/ZM8sr0tPN05u7hMUxNDNNkb98SMgoqmPbRZsqrjXwzq59NXox2IVp1pH0HcAJW1e6tbZZS3qZRliYTQvDslXHkl1Xz9OIDGEySm230ir9GO74R9v8MlzwKXrbbRt89zJvuYd48Nq4ri3Zn8+22dJ5efIAXlx1iXLz5qCAx0kcdFWhAbzCycv9Jvt2WzoaUfOx0gks7B3JJuD3ThnXHvoXt7Z/p9Ma/TG/g65v72XzX1PPRpABIKW3vxGQT2dvpeOfa3tz33S6e+/UgpVUG7rsspuVvcFY/Cx4h5n7/LYC7kz3X9ovg2n4RJGUV1x0VLNiVRXSgO9P6hHN17zB83LRvNG7tUnLL+HZrOgt2ZVFQXk2otwv/GdmJKYnhtPNyJiUlpVVt/ONCW+bGH7Q7AmhVHO11vDWtF26O+3hzdTJlegOPj4ttsUXAOXc3pG+E0S+DY8s7rI0L9eL5ifE8Ni6WJXtymL8tned+Pcj/lh9mTHw7pvWJoH8H3xb797FFVTVGliXlMH9LBlvTCrDXCUZ2DeKavhEMjva3+f77DXXsVBnTP93aKjb+oAqAxdjb6Xj56u64Odnz6fpUyvUGnp8Y3+Quolry2f+5eZL33jO0jnJRXB3tmdonnKl9wjmYU1K3V7pwdzYd/N34V59wrk4Ia3ENd7ZASklmYSU70wvZklrAkj3ZlFQZiPJz5ZExXbi6dxgBHq3rfd2XWcz1c7cioFVs/EEVAIvS6QRPje+Kp7M9b61JoUxv4PWpPW1m+rcGObkft6w/4dLHWuTe//nEBnvyzJVxPDImlqX7cpi/NZ0Xlx3i1ZWH6RHmTe9IH3qFe9Mrwod2XtpP1m1rqmqMJGUVszO9kB3HC9mZXlQ3RLqrox2XxQYxrW84Azr4tcojq41H85g1bzvero58eVNfOgQ07wWR1qIKgIUJIXjg8s64Odnz4rJDlOkNvHNtb5sduOoc69/AZO+Kru8srZNYhYujHVcnhHF1QhjJJ0v5cWcm21IL+HxDGh8ZTQCEeDnTK8KHXhHmgtAtxNMmJhVvTjnFlew8XlS7sS9kf3YxNUZzb+1IP1cGR/vTO9KH3hHedA7yaNHn9C9kwc5MHv5pL+393fhiZr9WtYPQQrZKLc+twzri4ezAEwuTmPTeBj6ekUikn5vWsf5ZYRok/URxl2vwcbHtQawsISbIg0fHxALmHisHskvYlV7EzvRCdqUX8eu+HAAc7XR0DfGsKwi9I7wJ9XZpNXu61QYTB3JK6jb2u44Xkl07MY+TvY4eYd7cNLgDvSPMR0pt5ZSZlJI5q47w1poUBnTw44N/J7S6rsWqAFjRtf0iiPB15c5vdnLluxt499reDLKh6erOseEt0NlRFPtvWv/m/++c7O1q9/p9mIn5eo7ckip2phexK8NcEObXDvQFEODhRO/aghCoqyA0woiLY8s4SjhVqmdneiE7azf4ezOL0RvMRz+h3i70jvRhVqQPvSN8iA32bFmnMC2kqsbIQz/uZdGebKYmhvHcVfGt8n1QBcDKBsf4s+iuQcz6YjszPtvK4+NiuWFglO3tPZblwq6voMc0jK4BWqexCYGezoyOa8foOPOIJjVGE4dPlLIr3XwOfFd6ISv2nwTgv8syiQl0J8DDCS8XB7xdHcxfXRzxqvveAS9X82Perg4WOa1UVWOksKKawvIaiiqqKayoobCimqKKalKzTyF3llFYbn789M+LK81zLzva6egW6sn0/pG1p3NU+weYB6S7/aud7Msq5uHRXbhtWAfb+7xaiCoAzSDSz40Fdwzi/u9288ziAxzMKeHZq+K0jvV3m98DYzUMug8KW9zIHM3CwU5HXKgXcaFeTB9gfiy/TM+yrQc5UePCgZwSCiuqySqspKjSvKH9p6ktHe11eJ9RLLxqC8OZxaLGKGs33GdsxGs39gUV1VTVmM67fGd7gZ97Fd6uDvi6ORLu64qPqwPhPq70jvSmW4hXm2vbuJD1yXncPX8nBqPkkxmJXNY1SOtIVqUKQDNxd7Lnw38n8MbqZN5anUxKbhkPD/bDJq6IqyqGbZ9C1yvBryMUpmidqMXwc3eif4R7vYN1SSkp0xsoqt3rLq6sqfu+qLKa4oq/HiuqrCarqJID2cUUV9ZQfsZQ40KAt4sDPq7mAhHs5UxssCc+rg74uDni4+qIj6sD3q6O+Lj99byMtFSbHAzOFplMku/25PPp9sNEB7rz4fRE2vvbeJudBagC0Ix0OsEDIzvRpZ0H//l+D7cuKOU1Bx9GxGq8l7HtU9CXwOD7tc3Ryggh8HB2wMPZgcZODVJtMFFcWYODncDT2aHVXEhli/LK9Dz4wx7+OJzHuPhg/jfZfD1PW9D6WjVagLHxwSy+exB+bvbcNG87j/+yT7vJZWoqYfP70HE4hPTUJoNyDkd7HQEeTni7OqqNvxWtT85jzJt/svFoPncPDOSda3u1mY0/qCMAzUQHevD2hAh+OWrko3XH2HQ0nzen9Wr+qwt3fw3luTD4geZdr6JoqNpg4vVVR/hw3VE6Brjz5U19sS/LbbWNveejjgA05GinY/bYWL6+uR/leiMT39vAB2uPYvqHhkOLMhrMXT/D+kDU4OZZp6JoLCmrmAnvrOeDtUeZ1iecxXcNpks7T61jaUIVABswKNqf5fcN4bLYIF5adojrPtlCVlGl9Ve8/2coOm4+99/G9nyUtqfaYGLOqiNc9e4G8sur+WRGIi9O6t5irt+wBlUAbIS3qyPvXdeb/03uzp7MIka+vpaP1x3DYDx/N7+LIiWsnwMBXaDTGOusQ1FsxIHsEq56dwNvrk7miu7BrLp/aKvv4tkQqg3AhgghmJoYzsCOfjy9aD/PLz3Igl1ZvDAxjl4RFr42N3kl5O6Hqz4AndoPUFqnMr2BN1YdYe7GNHxcHfhwegKjutU3VXnbpMknXwjxrBBirxBitxBipRAiRIsctirMx5WPZyTywb8TKCyvZtL7G3n8l311V3BaxPo54BUO8ZMtt0xFsRFSSpbty+Gy19byyfpUpiaG8dsDw9TG/yxaHQG8IqV8AkAIcQ/wJNDipoS0JiEEo+PaMTjGn9dWHmbexjRW7D/JE1d0ZXz34IvrrXB8E6RvgjH/A7vWNbiVoqTnV/DUoiR+P3yK2GBP3vt3b3pb+gi6ldBqSsiSM+66AWrsgfNwd7LnqfHduLp3GLN/3sc983fx7dZ0Hh0TS3xYE7uMrn/dPOFLr+mWDasoGiqurOHd31P4fEMaDnaCJ67oyvUDIlv1UNUXS0ipzbZXCPE8MAMoBi6VUp46z/NuAW4BCAkJSVi7dm2T1qfX63Fysq1hbBubyWiSLDlUxBc78ymuMjK8owc3JvoT7NHweW4dC5OJ+HUaq90ncsfHm6iqqmLYsGE88cQTdUcVZ+Y6dOgQTzzxBGVlZeh0OhYsWICTkxMzZ87k1KlTGAwGEhMTefrpp7Gzq783xaZNm5g7dy5ZWVm4uroyduxYZsyYcd7nf/DBB/zwww/Y2dnxxBNPMGTIkHNyzZkzh9WrVyOEwM/Pj5dffpmgoCAKCwu5++672bdvH5MmTeKpp55q8HvTVLb4vwVtJ5fBJFl8sIgvd+ZTqjdyeSdPbkzwx9+tcUe3rfn9iomJ2SGlTDznB1JKq9yA34Ckem5XnvW8R4FnGrLMhIQE2VTJyclNfq21NDVTSWW1fGX5Idn58aUyZvZS+X+L98uCMn3DXvzDTCmfD5F9EnrLjRs3SpPJJEePHi2XLl16Tq6amhoZHx8vd+/eLaWUMi8vTxoMBimllMXFxVJKKU0mk5w0aZKcP39+vat777335KhRo+S+ffuklFKWlZXJ559/Xk6ePFmaTKZznr9//37ZvXt3WVVVJY8dOyY7dOhQt84z36/T65dSyjfffFPeeuutdcv/888/5fvvvy/vvPPOhr0nF8kW/7ekbP25TCaTXJGUIy995XcZ+fASee3Hm2RSVpHmuSzNErmA7bKebarVjo2klJdJKePquS0866nfAFdbK0dr5OHswIOjOvPHg5cysVcoczekMvSV33n/j6NU1fzDkBIFqbB/ATntp1BSVs6AAQMQQjBjxgx++eWXc56+cuVKunfvTo8ePQDw8/Or22v39DRfOGMwGKiurq63TSI5OZnvv/+eJUuWEBdnHv3Uzc2N2bNn06VLF3788cdzXrNw4UKmTZuGk5MT7du3Jzo6mq1bt57zvNPrBygvL69bv5ubG4MHD8bZWQ1r3FpJKVl75BQT39vILV/uQAj47IZEvrqpH91CWv48vc1Jq15AMWfcnQAc0iJHS9fOy5mXJ3dn2b1D6RPly8vLD3HJK38wd0Nq/WMLbXwLdPZkBY8mLCys7uGwsDCysrLOefqRI0cQQjBq1Ch69+7N//73v7/9fNSoUQQGBuLh4cHkyef2Jpo7dy6zZ89Gp9Nx5513kpCQwNNPP829997LAw88wFdffXXOa7KysggP/2votPNlA3jssccIDw/n66+/5v/+7//O+z4prYOUkvXJeUz+YBPXf7aVU6V6XpgYz/L7hjK8S1CbG8bBErRqHXlJCJEkhNgLXA7cq1GOVqFzOw8+u6EP82f1J8LXlWcWH2Dwy2t49/cUSqpqu46WnoRdX0PPa5Fufucso74Pj8FgYP369Xz99desX7+en3/+mdWrV9f9fMWKFeTk5KDX61mzZs05r9+zZw/9+/dn8eLFODg4sGPHDjw9PSkuLsbHx4fS0tJzXiPraZM63wf7+eefJyMjg+uuu4533nnnvO+P0vJtPJrH1A838e9Pt5BdVMlzV8Xx+4OXcG2/CBxUI2+TadULSJ3ysYIBHf0Y0HEAW1MLePf3FF5ZcZgP1h7lhoFR3GH4EhdTDQy8h7BqVzIzM+tel5mZSUjIuZdihIWFMWzYMPz9zdNYjh07lp07dzJixIi65zg7OzNhwgQWLlzIyJEj//Z6KSV2dnYcOnSI0aNHAzBmzBj27t173oatsLAwMjIyLpjtTNdeey3jxo3jmWeeacC7pLQURpNk5f4TfPTnMXalFxHk6cSzV3Zjap9wnOzb7vANlqRKZyvUt70v82b2ZfFdgxkc7c+83/di2PIJ+72Hk20XQnBwMB4eHmzevBkpJV988QVXXnnlOcsZNWoUe/fupaKiAoPBwNq1a+natStlZWXk5JgnTDcYDCxdupQuXbqc8/r4+Hg2bdpE586dWblyJWA+apBS8vLLL9d72mjChAl8++236PV6UlNTSU5Opm/fvuc8Lzk5ue77RYsW1bt+pWWqqDYwb2Mal776B7d/vZOC8mqevbIba/97KdMHRKmNvwWpoSBasfgwL97/dwJ5y1bisaWSR3KHc+B/vzMyNojbHnuRm2++mcrKSsaMGcOYMebxgBYtWsTKlSt555138PHx4YEHHqBPnz4IIRg7dizjxo3j5MmTTJgwAb1ej9FoZPjw4dx227nX8V1//fXceOONrF+/nhUrVpCQkMD48ePZv38/PXr0YObMmee8plu3bkydOpWuXbtib2/Pu+++W9fwPHv2bB566CESExN55JFHOHz4MDqdjsjISD744IO6ZURFRVFSUkJ1dTW//PILK1eupGvXrlZ6lxVLyS2pYt6mNL7anE5xZQ29I7yZPbYLI7u2w07NiWAVml0H0BSJiYly+/btTXptSkqKzU2P1yyZairhjXgI7kHmuC/5anM6321Lp7CihphAd2YMiGRi7zDcz5gEw5K5Xn31VTZt2sScOXOIiIigsrKSBQsWMHTo0L819jaELf4NQeVqrDNzSSnZdCyfb7aks2L/CQwmyaiu7Zg1tD0Jkb6a5bIllsglhKj3OgB1BNDa7foKyk/B4PsJ83HlkTFduO+yGBbvyeaLTcd5YuF+Xl5+mKt7hzJ9QCTRgR4WXf2DDz7I0qVLmTVrFrm5uXh5eXHNNdcQGhpq0fUoLUt+mZ4fd2Ty7bYMUvPK8XJx4N/9I7l+QBRRbWAuXluhCkBrZjSYu36G9YXIQXUPOzvYMSUxnMkJYezOKOKLTceZvzWDeZuO0zvCmyHhTswMqcHL1TLjBI0dO5axY8daZFlKy3V6b//jNdlsOJ5MtdFEnygf7hkRzZi4YJwd1Ln95qYKQGu2fwEUpZsHfaunK6UQgl4RPvSK8OGxcbH8uCOTn3Zk8uaGIt7f/BuXdQ1kUq8whnUOUF3tlCaRUnLoRCkLd2ezeE82WUWVuDvquK5/BNf0jaBTkGWPOJXGUQWgtTKZaid8iYWYURd8ur+7E7cN68itQzuwfMt+tp4SLNqdzdJ9J/Bzc2R8jxAm9gqle5iXuuBGuaD0/AoW7cli0Z5sjpwsw04nGBztz4OjOtHJpYJuXTppHVFBFYDWK3kl5B6AiR81asIXIQQx/s6M6R/N7LGxrDtyigU7s/hmSzqfb0wj1NuFy7sFMapbO/pE+areGUqdnOJKliedYOHubHZnFAHQJ8qHZ6+KY2xcO/zczdd9pKSkaJhSOZMqAK2RlOYhn70iIG5SkxfjYKdjRGwQI2KDKK6oYdXBkyxPOsHXW9KZuyENPzdHRnYNYlRcOwZ29FP9s9sYk0myN6uYNQdP8tvBXA7kmEd57xrsySNjujC+Rwih3i4ap1T+iSoArVH6JsjYAmNftdiEL16uDkxOCGNyQhjlegN/HD7F8v0nWLwnm2+3ZeDhZM+QTv4MjQlgSKcA9cFvpSqqDfyZnMfqgydZc+gUeWV6dAISI315ZEwXLosNIjrQXeuYSgOpAtAa/fk6uPpDz+ussng3J3vGdQ9mXPdgqmqMbDyax/KkE6w9coql+04A0DHAjaGdAhgaE0C/Dr64Oqp/tZbIZDI34m48msefyXlsOpZPtcGEh7M9wzoFcFlsEMM6BeDj1vA5KRTboT6Vrc2JfZCyCoY/AY6uVl+ds4Mdw7sEMbxLEFJKjpws48/kU6xLzuOb2lNFjnY6EqN86Nfejz5RPvSM8FYFwUaZTJKUU2VsTS1g07F8Nh3Np6C8GoAO/m5M7x/JiNhA+kT5qp5hrYD6FLY26+eAowf0ubnZVy2EoHM7Dzq38+DmIR2oqjGyLa2AdUdOsT4lnzdWH0FKsNMJ4kI8SYzypU+UDwmRvgR42N5MTG1BVY2R/dnFbE8rZFtaAduPF1JUYR5BNsjTiUs6BTAw2p9B0X4Ee6nTeq2NKgCtScEx2P8zDLwbXLy1ToOzgx1DYgIYEhMAmOds3ZVeWLex+WrzcT5dnwpAhK8r8aFedAv1JC7Ei7hQL3zVaQWLqjaYOHqqjH2ZxezOLGJPRhGHTpRiNJmHg2nv78blXYNIjPKlb5QvkX6uqstvK6cKQGuy4S3QOUD/O7ROUi8vFwcu6RzIJZ0DAfMGKSm7mG2pBezJLGJfVjG/7supe36otwvdQjyJC/WiU5AHjlV6Io0mderhAqSUnCrTsyu7nLUnUjmQXcLBnBKSc0upMZo39h7O9vQI8+a2YR3oEeZNzwhvAj3ULGptjSoArUXpCdj9tbnh16Od1mkaxNFeR+8IH3pH+NQ9VlxRw/7sYpKyi0nKKiEpq5iVB07W/dx+wXGi/N2IDnCnY6Ab0YHudPB3J8zHBV83xza1x1quN5BRWEF6fgVp+eWk5JbV3UqqDHXP83d3omuIJ0M6+dM12JNuIV508HdDp67haPM0LQBCiAeBV4AAKWWelllavM3vgckAg+7ROslF8XJ1YGC0PwOj/eseK9cbOHqqjA37jlIq3EjJLeNIbimrDp6sO30B4OJgR5iPS+3NlTAfF0J9XAj0cCbAw4kADyfcHO1aRJEwmiR5ZXpOFFeRU1zFyRLz15ziSjIKKkgvqCSvTP+31/i7O9IxwJ3xPUKIDnTHtaaESxM6qz175bw0KwBCiHBgJJCuVYZWo7IItn0G3SaCbwet01icm5M93cO8ca3y+tuwuNUGE8fzy0nLryCzsILMwsq6rzvTiyiurDlnWS4Odvh7OBLg7oS/uxPerg54ODvg6eyAp4t97VcHPJztcXaww8leZ76d8b2Dna5uaCWBwGCS1BhNCMAoJdUGE9UGEzXG2u+NRqpqTJTrDZTV3kqrar+vMlBQUU1BWbX5a7n5VlRRjemskdod7ARBns6E+7hyWWwg4b6uRNTeIv1c8Xb9e5tJSkqK2vgr/0jLI4A5wEPAQg0ztA7bPoHqUhh8v9ZJmpWjvY6YIA9izjOgWHFlDTnFlZwq1dfd8spqvy/Tk5ZfTkmmgdKqGsqrjReZ5kiTXqUT4O3qiK+b+RYT6I6vmyN+bo4EeDoT7OlMOy/zzdfVUZ22USxKkwlhhBATgBFSynuFEGlA4vlOAQkhbgFuAQgJCUlYu3Ztk9Z5vjlotWSJTMJQSeTP49H7dSVn+Fs2k8sarJnLaJKUVZsorzZSXm2irNpItVFSbZDmr0ZJtbF2r97412dGSjAYDdjZ2QMSnRA46AQOdmfcdAJHO4Grow4XBx1uDna4OupwddDhbC+sdkqqLf4dL0ZrzhUTE9O8E8IIIX4D6muNfAyYDVzekOVIKT8CPgLzjGBNnRnHFmf7sUimrR+DvhD7UY8THWmZ388W3ytQuRpL5WqctpjLagVASnlZfY8LIeKB9sCe2j2fMGCnEKKvlPKEtfK0Wi4+ED8FIgZonURRlBam2dsApJT7gMDT9y90Cki5gPjJ5puiKEojqStqFEVR2ijNLwSTUkZpnUFRFKUtUkcAiqIobZQqAIqiKG2UKgCKoihtlCoAiqIobZQqAIqiKG2UKgCKoihtlCZjATWVEOIUcLyJL/cHbO1iM1vMBCpXY6lcjaNyNY4lckVKKQPOfrBFFYCLIYTYXt9gSFqyxUygcjWWytU4KlfjWDOXOgWkKIrSRqkCoCiK0ka1pQLwkdYB6mGLmUDlaiyVq3FUrsaxWq420wagKIqi/F1bOgJQFEVRzqAKgKIoShvV5gqAEOJBIYQUQvhrnQVACPGsEGKvEGK3EGKlECJE60wAQohXhBCHarP9LITw1joTgBBiihBivxDCJITQvMueEGK0EOKwECJFCPGI1nkAhBCfCSFyhRBJWmc5TQgRLoT4XQhxsPbvd6/WmQCEEM5CiK1CiD21uZ7ROtOZhBB2QohdQogl1lh+myoAQohwYCSQrnWWM7wipewupewJLAGe1DjPaauAOClld+AI8KjGeU5LAiYB67QOIoSwA94FxgBdgWuEEF21TQXA58BorUOcxQD8R0oZC/QH7rSR90oPDJdS9gB6AqOFEP21jfQ39wIHrbXwNlUAgDnAQ4DNtHxLKUvOuOuGjWSTUq6UUhpq727GPHez5qSUB6WUh7XOUasvkCKlPCalrAa+Ba7UOBNSynVAgdY5ziSlzJFS7qz9vhTzRi1U21Qgzcpq7zrU3mziMyiECAPGAZ9Yax1tpgAIISYAWVLKPVpnOZsQ4nkhRAZwHbZzBHCmmcAyrUPYoFAg44z7mdjARs3WCSGigF7AFo2jAHWnWXYDucAqKaVN5ALewLzDarLWCjSfEtKShBC/Ae3q+dFjwGzg8uZNZPZPuaSUC6WUjwGPCSEeBe4CnrKFXLXPeQzz4fvXzZGpoblshKjnMZvYe7RVQgh34CfgvrOOfjUjpTQCPWvbuX4WQsRJKTVtPxFCXAHkSil3CCEusdZ6WlUBkFJeVt/jQoh4oD2wRwgB5tMZO4UQfaWUJ7TKVY9vgF9ppgJwoVxCiOuBK4ARshkvGGnE+6W1TCD8jPthQLZGWWyeEMIB88b/aynlAq3znE1KWSSE+ANz+4nWDeiDgAlCiLGAM+AphPhKSvlvS66kTZwCklLuk1IGSimjaiehzwR6N8fG/0KEEDFn3J0AHNIqy5mEEKOBh4EJUsoKrfPYqG1AjBCivRDCEZgGLNI4k00S5j2vT4GDUsrXtc5zmhAi4HQPNyGEC3AZNvAZlFI+KqUMq91eTQPWWHrjD22kANi4l4QQSUKIvZhPUdlE9zjgHcADWFXbRfUDrQMBCCEmCiEygQHAr0KIFVplqW0kvwtYgblR83sp5X6t8pwmhJgPbAI6CyEyhRA3aZ0J8x7tdGB47f/T7tq9W60FA7/Xfv62YW4DsEqXS1ukhoJQFEVpo9QRgKIoShulCoCiKEobpQqAoihKG6UKgKIoShulCoCiKEobpQqA0uYIIYy13RCThBCLmzrSqRDiBiHEOxbIM8FWRhJV2hZVAJS2qFJK2VNKGYd50LQ7tQwjpVwkpXxJywxK26QKgNLWbaJ2ADchREchxHIhxA4hxJ9CiC61j48XQmypHZf9NyFE0D8tUAjRVwixsfb5G4UQnWsff0AI8Vnt9/G1RyCuZx5J1M53kFQ7Pr3mQ14rrZsqAEqbVTue/wj+Gr7hI+BuKWUC8CDwXu3j64H+UspemId8fugCiz4EDK19/pPAC7WPvwFECyEmAnOBW+sZZuNJYFTt+PQTmvq7KUpDtKrB4BSlgVxqh/+NAnZgHu7CHRgI/FA7YCCAU+3XMOA7IUQw4AikXmD5XsC82nGeJOYx5pFSmoQQNwB7gQ+llBvqee0G4HMhxPeAzQ2YprQu6ghAaYsqa2dgi8S8Qb8T82ehqLZt4PQttvb5bwPvSCnjgVsxj874T54Ffq9tYxh/1vNjgDKg3qk/pZS3AY9jHmV0txDCrym/oKI0hCoASpslpSwG7sF8uqcSSBVCTAHz6JVCiB61T/UCsmq/v74Biz7z+TecflAI4QW8CQwF/IQQk89+oRCio5Ryi5TySSCPvw83rSgWpQqA0qZJKXcBezAPuXsdcJMQYg+wn7+md3wa86mhPzFvlC/kf8CLQogNgN0Zj88B3pNSHgFuwjwSbOBZr31FCLFPmCd0X1ebTVGsQo0GqiiK0kapIwBFUZQ2ShUARVGUNkoVAEVRlDZKFQBFUZQ2ShUARVGUNkoVAEVRlDZKFQBFUZQ26v8B1OqA0Zu8axIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Linear dynamics\n", + "H_simple = ct.tf([1], [1, 2, 2, 1])\n", + "H_multiple = H_simple * ct.tf(*ct.pade(5, 4)) * 4\n", + "omega = np.logspace(-3, 3, 500)\n", + "\n", + "# Nonlinearity\n", + "F_backlash = ct.friction_backlash_nonlinearity(1)\n", + "amp = np.linspace(0.6, 5, 50)\n", + "\n", + "# Describing function plot\n", + "ct.describing_function_plot(H_multiple, F_backlash, amp, omega, mirror=False)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/examples/steering.ipynb b/examples/steering.ipynb index 1e6b022a1..eb22a5909 100644 --- a/examples/steering.ipynb +++ b/examples/steering.ipynb @@ -5,23 +5,12 @@ "metadata": {}, "source": [ "# Vehicle steering\n", - "Karl J. Astrom and Richard M. Murray \n", + "Karl J. Astrom and Richard M. Murray\n", "23 Jul 2019\n", "\n", "This notebook contains the computations for the vehicle steering running example in *Feedback Systems*." ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "RMM comments to Karl, 27 Jun 2019\n", - "* I'm using this notebook to walk through all of the vehicle steering examples and make sure that all of the parameters, conditions, and maximum steering angles are consitent and reasonable.\n", - "* Please feel free to send me comments on the contents as well as the bulletted notes, in whatever form is most convenient.\n", - "* Once we have sorted out all of the settings we want to use, I'll copy over the changes into the MATLAB files that we use for creating the figures in the book.\n", - "* These notes will be removed from the notebook once we have finalized everything." - ] - }, { "cell_type": "code", "execution_count": 1,