Thanks to visit codestin.com
Credit goes to github.com

Skip to content
This repository was archived by the owner on Dec 8, 2024. It is now read-only.

Commit 4fe6e50

Browse files
authored
Update README.md
1 parent 40fe0de commit 4fe6e50

File tree

1 file changed

+4
-38
lines changed

1 file changed

+4
-38
lines changed

README.md

Lines changed: 4 additions & 38 deletions
Original file line numberDiff line numberDiff line change
@@ -93,51 +93,17 @@ Generate ~100K atomic coulomb matrices = 0.22s
9393

9494

9595
## 3.1) Calculate kernels using the `Compound` class:
96-
97-
Example 1: Using a coulomb matrix
98-
99-
```python
100-
from qml.kernels import laplacian_kernel
101-
102-
comps = ... # load a Python list of Compunds
103-
104-
for comp in comps:
105-
comp.generate_coulomb_matrix()
106-
107-
training = comps[:1000]
108-
109-
K = laplacian_kernel(training, training, sigma=100.0)
110-
```
111-
112-
Example 1: Using ARAD representation
113-
114-
```python
115-
from qml.kernels import arad_kernel
116-
117-
comps = ... # load a Python list of Compunds
118-
119-
for comp in comps:
120-
comp.generate_coulomb_matrix()
121-
122-
training = comps[:1000]
123-
124-
K = arad_kernel(training, training, sigma=100.0)
125-
```
126-
127-
Additionally for ARAD, when the two sets of `Compound` are identical, it is possible to calculate only the upper triangle, which reduces the computational load by a factor of two.
128-
129-
```python
130-
from qml.kernels import arad_training_kernel
131-
K = arad_training_kernel(training, sigma=100.0)
132-
```
96+
... to be updated
13397

13498
## 3.2) Calculate kernels using the `qml.kernels` module directly
13599

136100

137101
```python
138102
from qml.kernels import laplacian_kernel
139103
```
140-
104+
... to be updated
141105
## 3.3) Benchmarks for QM7:
106+
... to be updated
142107

143108
## 4.1)
109+
... to be updated

0 commit comments

Comments
 (0)