@@ -106,22 +106,6 @@ class EllipticEnvelope(ClassifierMixin, OutlierDetectionMixin, MinCovDet):
106
106
107
107
Read more in the :ref:`User Guide <outlier_detection>`.
108
108
109
- Attributes
110
- ----------
111
- location_ : array-like, shape (n_features,)
112
- Estimated robust location
113
-
114
- covariance_ : array-like, shape (n_features, n_features)
115
- Estimated robust covariance matrix
116
-
117
- precision_ : array-like, shape (n_features, n_features)
118
- Estimated pseudo inverse matrix.
119
- (stored only if store_precision is True)
120
-
121
- support_ : array-like, shape (n_samples,)
122
- A mask of the observations that have been used to compute the
123
- robust estimates of location and shape.
124
-
125
109
Parameters
126
110
----------
127
111
store_precision : bool
@@ -146,6 +130,22 @@ class EllipticEnvelope(ClassifierMixin, OutlierDetectionMixin, MinCovDet):
146
130
The amount of contamination of the data set, i.e. the proportion
147
131
of outliers in the data set.
148
132
133
+ Attributes
134
+ ----------
135
+ location_ : array-like, shape (n_features,)
136
+ Estimated robust location
137
+
138
+ covariance_ : array-like, shape (n_features, n_features)
139
+ Estimated robust covariance matrix
140
+
141
+ precision_ : array-like, shape (n_features, n_features)
142
+ Estimated pseudo inverse matrix.
143
+ (stored only if store_precision is True)
144
+
145
+ support_ : array-like, shape (n_samples,)
146
+ A mask of the observations that have been used to compute the
147
+ robust estimates of location and shape.
148
+
149
149
See Also
150
150
--------
151
151
EmpiricalCovariance, MinCovDet
0 commit comments