diff --git a/cachematrix.R b/cachematrix.R index a50be65aa44..749d2544d3a 100644 --- a/cachematrix.R +++ b/cachematrix.R @@ -1,15 +1,62 @@ -## Put comments here that give an overall description of what your -## functions do -## Write a short comment describing this function +## This function creates a special "matrix" object that can cache its inverse makeCacheMatrix <- function(x = matrix()) { + + # initialize + m <- NULL + + # define function to set + set <- function(y) { + x <<- y + m <<- NULL + } + + # define get function + get <- function() x + + # define function to set inverse + setinverse <- function(solve) m <<- solve -} + # define function to get the inverse + getinverse <- function() m + list(set = set, get = get, + setinverse = setinverse, + getinverse = getinverse) +} -## Write a short comment describing this function +## This function computes the inverse of the special "matrix" returned by makeCacheMatrix above. +## If the inverse has already been calculated (and the matrix has not changed), +## then the cachesolve should retrieve the inverse from the cache. cacheSolve <- function(x, ...) { - ## Return a matrix that is the inverse of 'x' + ## Return a matrix that is the inverse of 'x' + + # Computing the inverse of a square matrix can be done with the solve function in R. + # For example, if X is a square invertible matrix, then solve(X) returns its inverse. + # For this assignment, assume that the matrix supplied is always invertible. + + inverse <- x$getinverse() + + if(!is.null(inverse)) { + message("getting cached data") + return(inverse) + } + data <- x$get() + m <- solve(data, ...) + x$setinverse(m) + m } + +# Test Data: set up a simple 2x2 matrix +seq1 <- seq(1:4) +mat1 <- matrix(seq1, 2) + + +# Translate into the matrix object, and find the inverse +foo <- makeCacheMatrix(mat1) +bar <- cacheSolve(foo) + +# Print the results of the inverse matrix +print(bar) \ No newline at end of file