Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Commit 08924c3

Browse files
benjastudioqinhanmin2014
authored andcommitted
EXA Fix bad data visualisation in "Importance of Feature Scaling" (#12280)
1 parent afa0694 commit 08924c3

File tree

1 file changed

+7
-4
lines changed

1 file changed

+7
-4
lines changed

examples/preprocessing/plot_scaling_importance.py

Lines changed: 7 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -93,24 +93,27 @@
9393
print('\nPC 1 without scaling:\n', pca.components_[0])
9494
print('\nPC 1 with scaling:\n', pca_std.components_[0])
9595

96-
# Scale and use PCA on X_train data for visualization.
96+
# Use PCA without and with scale on X_train data for visualization.
97+
X_train_transformed = pca.transform(X_train)
9798
scaler = std_clf.named_steps['standardscaler']
98-
X_train_std = pca_std.transform(scaler.transform(X_train))
99+
X_train_std_transformed = pca_std.transform(scaler.transform(X_train))
99100

100101
# visualize standardized vs. untouched dataset with PCA performed
101102
fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=FIG_SIZE)
102103

103104

104105
for l, c, m in zip(range(0, 3), ('blue', 'red', 'green'), ('^', 's', 'o')):
105-
ax1.scatter(X_train[y_train == l, 0], X_train[y_train == l, 1],
106+
ax1.scatter(X_train_transformed[y_train == l, 0],
107+
X_train_transformed[y_train == l, 1],
106108
color=c,
107109
label='class %s' % l,
108110
alpha=0.5,
109111
marker=m
110112
)
111113

112114
for l, c, m in zip(range(0, 3), ('blue', 'red', 'green'), ('^', 's', 'o')):
113-
ax2.scatter(X_train_std[y_train == l, 0], X_train_std[y_train == l, 1],
115+
ax2.scatter(X_train_std_transformed[y_train == l, 0],
116+
X_train_std_transformed[y_train == l, 1],
114117
color=c,
115118
label='class %s' % l,
116119
alpha=0.5,

0 commit comments

Comments
 (0)