@@ -292,8 +292,9 @@ class FeatureUnion(BaseEstimator, TransformerMixin):
292
292
"""Concatenates results of multiple transformer objects.
293
293
294
294
This estimator applies a list of transformer objects in parallel to the
295
- input data, then concatenates the results. This is useful to combine
296
- several feature extraction mechanisms into a single transformer.
295
+ input data, or each to a different field of the input, then concatenates
296
+ the results. This is useful to combine several feature extraction
297
+ mechanisms into a single transformer.
297
298
298
299
Parameters
299
300
----------
@@ -415,7 +416,8 @@ def transform(self, X):
415
416
Xs = Parallel (n_jobs = self .n_jobs )(
416
417
delayed (_transform_one )(trans , name , X , self .transformer_weights ,
417
418
field )
418
- for (name , trans ), field in zip (self .transformer_list , self .fields_ ))
419
+ for (name , trans ), field in zip (self .transformer_list ,
420
+ self .fields_ ))
419
421
if any (sparse .issparse (f ) for f in Xs ):
420
422
Xs = sparse .hstack (Xs ).tocsr ()
421
423
else :
@@ -443,8 +445,8 @@ def _check_fields(self):
443
445
fields = self .fields
444
446
if len (fields ) != len (self .transformer_list ):
445
447
raise ValueError ("Length of transformer list %d does not match"
446
- " length of fields %d" % ( len ( self . transformer_list ),
447
- len (fields )))
448
+ " length of fields %d" %
449
+ ( len ( self . transformer_list ), len (fields )))
448
450
else :
449
451
fields = [None for x in self .transformer_list ]
450
452
return fields
0 commit comments