25
25
from .utils import check_arrays , check_random_state , safe_mask
26
26
from .utils .validation import _num_samples
27
27
from .utils .fixes import unique
28
- from .externals .joblib import Parallel , delayed , logger
28
+ from .externals .joblib import Parallel , delayed
29
29
from .externals .six import string_types , with_metaclass
30
30
from .metrics .scorer import _deprecate_loss_and_score_funcs
31
31
@@ -1096,18 +1096,14 @@ def cross_val_score(estimator, X, y=None, scoring=None, cv=None, n_jobs=1,
1096
1096
pre_dispatch = pre_dispatch )
1097
1097
scores = parallel (
1098
1098
delayed (_cross_val_score )(clone (estimator ), X , y , scorer , train , test ,
1099
- parameters = None , verbose = verbose ,
1100
- fit_params = fit_params ,
1101
- log_label = "cross_val_score" )
1099
+ verbose = verbose , fit_params = fit_params )
1102
1100
for train , test in cv )
1103
1101
return np .array (scores )[:, 0 ]
1104
1102
1105
1103
1106
- def _cross_val_score (estimator , X , y , scorer , train , test , parameters ,
1107
- verbose , fit_params , log_label ):
1104
+ def _cross_val_score (estimator , X , y , scorer , train , test ,
1105
+ verbose , fit_params ):
1108
1106
"""Inner loop for cross validation"""
1109
- if parameters is not None :
1110
- estimator .set_params (** parameters )
1111
1107
n_samples = _num_samples (X )
1112
1108
fit_params = fit_params if fit_params is not None else {}
1113
1109
fit_params = dict ([(k , np .asarray (v )[train ]
@@ -1116,25 +1112,12 @@ def _cross_val_score(estimator, X, y, scorer, train, test, parameters,
1116
1112
1117
1113
start_time = time .time ()
1118
1114
1119
- if verbose > 1 :
1120
- if parameters is None :
1121
- msg = ""
1122
- else :
1123
- msg = '%s' % (', ' .join ('%s=%s' % (k , v )
1124
- for k , v in parameters .items ()))
1125
- print ("[%s] %s %s" % (log_label , msg , (64 - len (msg )) * '.' ))
1126
-
1127
1115
X_train , y_train = _split (estimator , X , y , train )
1128
1116
X_test , y_test = _split (estimator , X , y , test , train )
1129
1117
_fit (estimator .fit , X_train , y_train , ** fit_params )
1130
1118
score = _score (estimator , X_test , y_test , scorer )
1131
1119
1132
1120
scoring_time = time .time () - start_time
1133
- if verbose > 2 :
1134
- msg += ", score=%f" % score
1135
- if verbose > 1 :
1136
- end_msg = "%s -%s" % (msg , logger .short_format_time (scoring_time ))
1137
- print ("[%s] %s %s" % (log_label , (64 - len (end_msg )) * '.' , end_msg ))
1138
1121
1139
1122
return score , _num_samples (X_test ), scoring_time
1140
1123
0 commit comments