@@ -71,7 +71,7 @@ def test_sample_weight_smoke():
71
71
# least squares
72
72
loss = LeastSquaresError (1 )
73
73
loss_wo_sw = loss (y , pred )
74
- loss_w_sw = loss (y , pred , np .ones (pred .shape [0 ], dtype = np .float32 ))
74
+ loss_w_sw = loss (y , pred , np .ones (pred .shape [0 ], dtype = np .float64 ))
75
75
assert_almost_equal (loss_wo_sw , loss_w_sw )
76
76
77
77
@@ -113,30 +113,30 @@ def test_sample_weight_init_estimators():
113
113
114
114
115
115
def test_weighted_percentile ():
116
- y = np .empty (102 , dtype = np .float )
116
+ y = np .empty (102 , dtype = np .float64 )
117
117
y [:50 ] = 0
118
118
y [- 51 :] = 2
119
119
y [- 1 ] = 100000
120
120
y [50 ] = 1
121
- sw = np .ones (102 , dtype = np .float )
121
+ sw = np .ones (102 , dtype = np .float64 )
122
122
sw [- 1 ] = 0.0
123
123
score = _weighted_percentile (y , sw , 50 )
124
124
assert score == 1
125
125
126
126
127
127
def test_weighted_percentile_equal ():
128
- y = np .empty (102 , dtype = np .float )
128
+ y = np .empty (102 , dtype = np .float64 )
129
129
y .fill (0.0 )
130
- sw = np .ones (102 , dtype = np .float )
130
+ sw = np .ones (102 , dtype = np .float64 )
131
131
sw [- 1 ] = 0.0
132
132
score = _weighted_percentile (y , sw , 50 )
133
133
assert score == 0
134
134
135
135
136
136
def test_weighted_percentile_zero_weight ():
137
- y = np .empty (102 , dtype = np .float )
137
+ y = np .empty (102 , dtype = np .float64 )
138
138
y .fill (1.0 )
139
- sw = np .ones (102 , dtype = np .float )
139
+ sw = np .ones (102 , dtype = np .float64 )
140
140
sw .fill (0.0 )
141
141
score = _weighted_percentile (y , sw , 50 )
142
142
assert score == 1.0
0 commit comments