Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Commit 3fdbd3d

Browse files
authored
DOC Ensures that paired_euclidean_distances passes numpydoc validation (#22783)
1 parent a8c41b5 commit 3fdbd3d

File tree

2 files changed

+5
-3
lines changed

2 files changed

+5
-3
lines changed

sklearn/metrics/pairwise.py

Lines changed: 5 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -992,20 +992,23 @@ def cosine_distances(X, Y=None):
992992

993993
# Paired distances
994994
def paired_euclidean_distances(X, Y):
995-
"""
996-
Computes the paired euclidean distances between X and Y.
995+
"""Compute the paired euclidean distances between X and Y.
997996
998997
Read more in the :ref:`User Guide <metrics>`.
999998
1000999
Parameters
10011000
----------
10021001
X : array-like of shape (n_samples, n_features)
1002+
Input array/matrix X.
10031003
10041004
Y : array-like of shape (n_samples, n_features)
1005+
Input array/matrix Y.
10051006
10061007
Returns
10071008
-------
10081009
distances : ndarray of shape (n_samples,)
1010+
Output array/matrix containing the calculated paired euclidian
1011+
distances.
10091012
"""
10101013
X, Y = check_paired_arrays(X, Y)
10111014
return row_norms(X - Y)

sklearn/tests/test_docstrings.py

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -94,7 +94,6 @@
9494
"sklearn.metrics.pairwise.haversine_distances",
9595
"sklearn.metrics.pairwise.kernel_metrics",
9696
"sklearn.metrics.pairwise.laplacian_kernel",
97-
"sklearn.metrics.pairwise.paired_euclidean_distances",
9897
"sklearn.metrics.pairwise.paired_manhattan_distances",
9998
"sklearn.metrics.pairwise.pairwise_distances_argmin",
10099
"sklearn.metrics.pairwise.pairwise_distances_argmin_min",

0 commit comments

Comments
 (0)