@@ -554,7 +554,7 @@ def homogeneity_score(labels_true, labels_pred):
554
554
555
555
556
556
def completeness_score (labels_true , labels_pred ):
557
- """Completeness metric of a cluster labeling given a ground truth.
557
+ """Compute completeness metric of a cluster labeling given a ground truth.
558
558
559
559
A clustering result satisfies completeness if all the data points
560
560
that are members of a given class are elements of the same cluster.
@@ -572,15 +572,20 @@ def completeness_score(labels_true, labels_pred):
572
572
Parameters
573
573
----------
574
574
labels_true : int array, shape = [n_samples]
575
- ground truth class labels to be used as a reference
575
+ Ground truth class labels to be used as a reference.
576
576
577
577
labels_pred : array-like of shape (n_samples,)
578
- cluster labels to evaluate
578
+ Cluster labels to evaluate.
579
579
580
580
Returns
581
581
-------
582
582
completeness : float
583
- score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling
583
+ Score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling.
584
+
585
+ See Also
586
+ --------
587
+ homogeneity_score : Homogeneity metric of cluster labeling.
588
+ v_measure_score : V-Measure (NMI with arithmetic mean option).
584
589
585
590
References
586
591
----------
@@ -589,11 +594,6 @@ def completeness_score(labels_true, labels_pred):
589
594
conditional entropy-based external cluster evaluation measure
590
595
<https://aclweb.org/anthology/D/D07/D07-1043.pdf>`_
591
596
592
- See Also
593
- --------
594
- homogeneity_score
595
- v_measure_score
596
-
597
597
Examples
598
598
--------
599
599
0 commit comments