@@ -172,8 +172,8 @@ def fastica(
172
172
Parameters
173
173
----------
174
174
X : array-like of shape (n_samples, n_features)
175
- Training vector, where n_samples is the number of samples and
176
- n_features is the number of features.
175
+ Training vector, where ` n_samples` is the number of samples and
176
+ ` n_features` is the number of features.
177
177
178
178
n_components : int, default=None
179
179
Number of components to extract. If None no dimension reduction
@@ -464,8 +464,8 @@ def _fit(self, X, compute_sources=False):
464
464
Parameters
465
465
----------
466
466
X : array-like of shape (n_samples, n_features)
467
- Training data, where n_samples is the number of samples
468
- and n_features is the number of features.
467
+ Training data, where ` n_samples` is the number of samples
468
+ and ` n_features` is the number of features.
469
469
470
470
compute_sources : bool, default=False
471
471
If False, sources are not computes but only the rotation matrix.
@@ -600,8 +600,8 @@ def fit_transform(self, X, y=None):
600
600
Parameters
601
601
----------
602
602
X : array-like of shape (n_samples, n_features)
603
- Training data, where n_samples is the number of samples
604
- and n_features is the number of features.
603
+ Training data, where ` n_samples` is the number of samples
604
+ and ` n_features` is the number of features.
605
605
606
606
y : Ignored
607
607
Not used, present for API consistency by convention.
@@ -620,8 +620,8 @@ def fit(self, X, y=None):
620
620
Parameters
621
621
----------
622
622
X : array-like of shape (n_samples, n_features)
623
- Training data, where n_samples is the number of samples
624
- and n_features is the number of features.
623
+ Training data, where ` n_samples` is the number of samples
624
+ and ` n_features` is the number of features.
625
625
626
626
y : Ignored
627
627
Not used, present for API consistency by convention.
@@ -640,8 +640,8 @@ def transform(self, X, copy=True):
640
640
Parameters
641
641
----------
642
642
X : array-like of shape (n_samples, n_features)
643
- Data to transform, where n_samples is the number of samples
644
- and n_features is the number of features.
643
+ Data to transform, where ` n_samples` is the number of samples
644
+ and ` n_features` is the number of features.
645
645
646
646
copy : bool, default=True
647
647
If False, data passed to fit can be overwritten. Defaults to True.
@@ -668,8 +668,8 @@ def inverse_transform(self, X, copy=True):
668
668
Parameters
669
669
----------
670
670
X : array-like of shape (n_samples, n_components)
671
- Sources, where n_samples is the number of samples
672
- and n_components is the number of components.
671
+ Sources, where ` n_samples` is the number of samples
672
+ and ` n_components` is the number of components.
673
673
copy : bool, default=True
674
674
If False, data passed to fit are overwritten. Defaults to True.
675
675
0 commit comments