@@ -2647,7 +2647,7 @@ class MultiTaskElasticNetCV(RegressorMixin, LinearModelCV):
2647
2647
prediction score is used. Note that a good choice of list of
2648
2648
values for l1_ratio is often to put more values close to 1
2649
2649
(i.e. Lasso) and less close to 0 (i.e. Ridge), as in ``[.1, .5, .7,
2650
- .9, .95, .99, 1]``
2650
+ .9, .95, .99, 1]``.
2651
2651
2652
2652
eps : float, default=1e-3
2653
2653
Length of the path. ``eps=1e-3`` means that
@@ -2768,6 +2768,21 @@ class MultiTaskElasticNetCV(RegressorMixin, LinearModelCV):
2768
2768
2769
2769
.. versionadded:: 1.0
2770
2770
2771
+ See Also
2772
+ --------
2773
+ MultiTaskElasticNet : Multi-task L1/L2 ElasticNet with built-in cross-validation.
2774
+ ElasticNetCV : Elastic net model with best model selection by
2775
+ cross-validation.
2776
+ MultiTaskLassoCV : Multi-task Lasso model trained with L1/L2
2777
+ mixed-norm as regularizer.
2778
+
2779
+ Notes
2780
+ -----
2781
+ The algorithm used to fit the model is coordinate descent.
2782
+
2783
+ To avoid unnecessary memory duplication the X and y arguments of the fit
2784
+ method should be directly passed as Fortran-contiguous numpy arrays.
2785
+
2771
2786
Examples
2772
2787
--------
2773
2788
>>> from sklearn import linear_model
@@ -2780,19 +2795,6 @@ class MultiTaskElasticNetCV(RegressorMixin, LinearModelCV):
2780
2795
[0.52875032 0.46958558]]
2781
2796
>>> print(clf.intercept_)
2782
2797
[0.00166409 0.00166409]
2783
-
2784
- See Also
2785
- --------
2786
- MultiTaskElasticNet
2787
- ElasticNetCV
2788
- MultiTaskLassoCV
2789
-
2790
- Notes
2791
- -----
2792
- The algorithm used to fit the model is coordinate descent.
2793
-
2794
- To avoid unnecessary memory duplication the X and y arguments of the fit
2795
- method should be directly passed as Fortran-contiguous numpy arrays.
2796
2798
"""
2797
2799
2798
2800
path = staticmethod (enet_path )
@@ -2849,13 +2851,14 @@ def fit(self, X, y):
2849
2851
Parameters
2850
2852
----------
2851
2853
X : ndarray of shape (n_samples, n_features)
2852
- Data
2854
+ Training data.
2853
2855
y : ndarray of shape (n_samples, n_targets)
2854
- Target . Will be cast to X's dtype if necessary
2856
+ Training target variable . Will be cast to X's dtype if necessary.
2855
2857
2856
2858
Returns
2857
2859
-------
2858
2860
self : object
2861
+ Returns MultiTaskElasticNet instance.
2859
2862
"""
2860
2863
return super ().fit (X , y )
2861
2864
0 commit comments