@@ -955,11 +955,13 @@ class SGDClassifier(BaseSGDClassifier):
955955 value, the stronger the regularization.
956956 Also used to compute the learning rate when set to `learning_rate` is
957957 set to 'optimal'.
958+ Values must be in the range `[0.0, inf)`.
958959
959960 l1_ratio : float, default=0.15
960961 The Elastic Net mixing parameter, with 0 <= l1_ratio <= 1.
961962 l1_ratio=0 corresponds to L2 penalty, l1_ratio=1 to L1.
962963 Only used if `penalty` is 'elasticnet'.
964+ Values must be in the range `[0.0, 1.0]`.
963965
964966 fit_intercept : bool, default=True
965967 Whether the intercept should be estimated or not. If False, the
@@ -969,6 +971,7 @@ class SGDClassifier(BaseSGDClassifier):
969971 The maximum number of passes over the training data (aka epochs).
970972 It only impacts the behavior in the ``fit`` method, and not the
971973 :meth:`partial_fit` method.
974+ Values must be in the range `[1, inf)`.
972975
973976 .. versionadded:: 0.19
974977
@@ -978,6 +981,7 @@ class SGDClassifier(BaseSGDClassifier):
978981 epochs.
979982 Convergence is checked against the training loss or the
980983 validation loss depending on the `early_stopping` parameter.
984+ Values must be in the range `[0.0, inf)`.
981985
982986 .. versionadded:: 0.19
983987
@@ -986,6 +990,7 @@ class SGDClassifier(BaseSGDClassifier):
986990
987991 verbose : int, default=0
988992 The verbosity level.
993+ Values must be in the range `[0, inf)`.
989994
990995 epsilon : float, default=0.1
991996 Epsilon in the epsilon-insensitive loss functions; only if `loss` is
@@ -994,6 +999,7 @@ class SGDClassifier(BaseSGDClassifier):
994999 important to get the prediction exactly right.
9951000 For epsilon-insensitive, any differences between the current prediction
9961001 and the correct label are ignored if they are less than this threshold.
1002+ Values must be in the range `[0.0, inf)`.
9971003
9981004 n_jobs : int, default=None
9991005 The number of CPUs to use to do the OVA (One Versus All, for
@@ -1006,18 +1012,19 @@ class SGDClassifier(BaseSGDClassifier):
10061012 Used for shuffling the data, when ``shuffle`` is set to ``True``.
10071013 Pass an int for reproducible output across multiple function calls.
10081014 See :term:`Glossary <random_state>`.
1015+ Integer values must be in the range `[0, 2**32 - 1]`.
10091016
10101017 learning_rate : str, default='optimal'
10111018 The learning rate schedule:
10121019
10131020 - 'constant': `eta = eta0`
10141021 - 'optimal': `eta = 1.0 / (alpha * (t + t0))`
1015- where t0 is chosen by a heuristic proposed by Leon Bottou.
1022+ where `t0` is chosen by a heuristic proposed by Leon Bottou.
10161023 - 'invscaling': `eta = eta0 / pow(t, power_t)`
1017- - 'adaptive': eta = eta0, as long as the training keeps decreasing.
1024+ - 'adaptive': ` eta = eta0` , as long as the training keeps decreasing.
10181025 Each time n_iter_no_change consecutive epochs fail to decrease the
10191026 training loss by tol or fail to increase validation score by tol if
1020- early_stopping is True, the current learning rate is divided by 5.
1027+ ` early_stopping` is ` True` , the current learning rate is divided by 5.
10211028
10221029 .. versionadded:: 0.20
10231030 Added 'adaptive' option
@@ -1026,13 +1033,15 @@ class SGDClassifier(BaseSGDClassifier):
10261033 The initial learning rate for the 'constant', 'invscaling' or
10271034 'adaptive' schedules. The default value is 0.0 as eta0 is not used by
10281035 the default schedule 'optimal'.
1036+ Values must be in the range `(0.0, inf)`.
10291037
10301038 power_t : float, default=0.5
10311039 The exponent for inverse scaling learning rate [default 0.5].
1040+ Values must be in the range `(-inf, inf)`.
10321041
10331042 early_stopping : bool, default=False
10341043 Whether to use early stopping to terminate training when validation
1035- score is not improving. If set to True, it will automatically set aside
1044+ score is not improving. If set to ` True` , it will automatically set aside
10361045 a stratified fraction of training data as validation and terminate
10371046 training when validation score returned by the `score` method is not
10381047 improving by at least tol for n_iter_no_change consecutive epochs.
@@ -1044,6 +1053,7 @@ class SGDClassifier(BaseSGDClassifier):
10441053 The proportion of training data to set aside as validation set for
10451054 early stopping. Must be between 0 and 1.
10461055 Only used if `early_stopping` is True.
1056+ Values must be in the range `(0.0, 1.0)`.
10471057
10481058 .. versionadded:: 0.20
10491059 Added 'validation_fraction' option
@@ -1053,6 +1063,7 @@ class SGDClassifier(BaseSGDClassifier):
10531063 fitting.
10541064 Convergence is checked against the training loss or the
10551065 validation loss depending on the `early_stopping` parameter.
1066+ Integer values must be in the range `[1, max_iter)`.
10561067
10571068 .. versionadded:: 0.20
10581069 Added 'n_iter_no_change' option
@@ -1081,11 +1092,12 @@ class SGDClassifier(BaseSGDClassifier):
10811092 existing counter.
10821093
10831094 average : bool or int, default=False
1084- When set to True, computes the averaged SGD weights across all
1095+ When set to ` True` , computes the averaged SGD weights across all
10851096 updates and stores the result in the ``coef_`` attribute. If set to
10861097 an int greater than 1, averaging will begin once the total number of
10871098 samples seen reaches `average`. So ``average=10`` will begin
10881099 averaging after seeing 10 samples.
1100+ Integer values must be in the range `[1, n_samples]`.
10891101
10901102 Attributes
10911103 ----------
0 commit comments