Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Commit d13cda7

Browse files
DOC: Minor revision to the API Reference cross-links (#32166)
Co-authored-by: Jérémie du Boisberranger <[email protected]>
1 parent 5ba1a95 commit d13cda7

File tree

4 files changed

+16
-12
lines changed

4 files changed

+16
-12
lines changed

sklearn/datasets/_samples_generator.py

Lines changed: 6 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1862,7 +1862,7 @@ def make_swiss_roll(n_samples=100, *, noise=0.0, random_state=None, hole=False):
18621862
18631863
Read more in the :ref:`User Guide <sample_generators>`.
18641864
1865-
Adapted with permission from Stephen Marsland's code [1].
1865+
Adapted with permission from Stephen Marsland's code [1]_.
18661866
18671867
Parameters
18681868
----------
@@ -1891,7 +1891,7 @@ def make_swiss_roll(n_samples=100, *, noise=0.0, random_state=None, hole=False):
18911891
18921892
Notes
18931893
-----
1894-
The algorithm is from Marsland [1].
1894+
The algorithm is from Marsland [1]_.
18951895
18961896
References
18971897
----------
@@ -2058,11 +2058,13 @@ def make_gaussian_quantiles(
20582058
20592059
Notes
20602060
-----
2061-
The dataset is from Zhu et al [1].
2061+
The dataset is from Zhu et al [1]_.
20622062
20632063
References
20642064
----------
2065-
.. [1] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009.
2065+
.. [1] :doi:`J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost."
2066+
Statistics and its Interface 2.3 (2009): 349-360.
2067+
<10.4310/SII.2009.v2.n3.a8>`
20662068
20672069
Examples
20682070
--------

sklearn/ensemble/_forest.py

Lines changed: 6 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1479,7 +1479,8 @@ class labels (multi-output problem).
14791479
14801480
References
14811481
----------
1482-
.. [1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001.
1482+
.. [1] :doi:`L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001.
1483+
<10.1023/A:1010933404324>`
14831484
14841485
Examples
14851486
--------
@@ -1852,11 +1853,12 @@ class RandomForestRegressor(ForestRegressor):
18521853
18531854
The default value ``max_features=1.0`` uses ``n_features``
18541855
rather than ``n_features / 3``. The latter was originally suggested in
1855-
[1], whereas the former was more recently justified empirically in [2].
1856+
[1]_, whereas the former was more recently justified empirically in [2]_.
18561857
18571858
References
18581859
----------
1859-
.. [1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001.
1860+
.. [1] :doi:`L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001.
1861+
<10.1023/A:1010933404324>`
18601862
18611863
.. [2] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized
18621864
trees", Machine Learning, 63(1), 3-42, 2006.
@@ -2842,7 +2844,7 @@ class RandomTreesEmbedding(TransformerMixin, BaseForest):
28422844
Machine Learning, 63(1), 3-42, 2006.
28432845
.. [2] Moosmann, F. and Triggs, B. and Jurie, F. "Fast discriminative
28442846
visual codebooks using randomized clustering forests"
2845-
NIPS 2007
2847+
NIPS 2007.
28462848
28472849
Examples
28482850
--------

sklearn/linear_model/_base.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -487,7 +487,7 @@ class LinearRegression(MultiOutputMixin, RegressorMixin, LinearModel):
487487
tol : float, default=1e-6
488488
The precision of the solution (`coef_`) is determined by `tol` which
489489
specifies a different convergence criterion for the `lsqr` solver.
490-
`tol` is set as `atol` and `btol` of `scipy.sparse.linalg.lsqr` when
490+
`tol` is set as `atol` and `btol` of :func:`scipy.sparse.linalg.lsqr` when
491491
fitting on sparse training data. This parameter has no effect when fitting
492492
on dense data.
493493
@@ -554,8 +554,8 @@ class LinearRegression(MultiOutputMixin, RegressorMixin, LinearModel):
554554
Notes
555555
-----
556556
From the implementation point of view, this is just plain Ordinary
557-
Least Squares (scipy.linalg.lstsq) or Non Negative Least Squares
558-
(scipy.optimize.nnls) wrapped as a predictor object.
557+
Least Squares (:func:`scipy.linalg.lstsq`) or Non Negative Least Squares
558+
(:func:`scipy.optimize.nnls`) wrapped as a predictor object.
559559
560560
Examples
561561
--------

sklearn/utils/_show_versions.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -75,7 +75,7 @@ def _get_deps_info():
7575

7676

7777
def show_versions():
78-
"""Print useful debugging information"
78+
"""Print useful debugging information.
7979
8080
.. versionadded:: 0.20
8181

0 commit comments

Comments
 (0)