Thanks to visit codestin.com
Credit goes to github.com

Skip to content

Commit dffa9ce

Browse files
committed
DOC Use quantile_transform in docstring for consistency, fix typos
1 parent 0b81605 commit dffa9ce

File tree

1 file changed

+4
-4
lines changed

1 file changed

+4
-4
lines changed

sklearn/preprocessing/data.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -2489,7 +2489,7 @@ class PowerTransformer(BaseEstimator, TransformerMixin):
24892489
or other situations where normality is desired.
24902490
24912491
Currently, PowerTransformer supports the Box-Cox transform and the
2492-
Yeo-Johson transform. The optimal parameter for stabilizing variance and
2492+
Yeo-Johnson transform. The optimal parameter for stabilizing variance and
24932493
minimizing skewness is estimated through maximum likelihood.
24942494
24952495
Box-Cox requires input data to be strictly positive, while Yeo-Johnson
@@ -2851,8 +2851,8 @@ def power_transform(X, method='yeo-johnson', standardize=True, copy=True):
28512851
modeling issues related to heteroscedasticity (non-constant variance),
28522852
or other situations where normality is desired.
28532853
2854-
Currently, PowerTransformer supports the Box-Cox transform and the
2855-
Yeo-Johson transform. The optimal parameter for stabilizing variance and
2854+
Currently, power_transform supports the Box-Cox transform and the
2855+
Yeo-Johnson transform. The optimal parameter for stabilizing variance and
28562856
minimizing skewness is estimated through maximum likelihood.
28572857
28582858
Box-Cox requires input data to be strictly positive, while Yeo-Johnson
@@ -2897,7 +2897,7 @@ def power_transform(X, method='yeo-johnson', standardize=True, copy=True):
28972897
``Transformer`` API (e.g. as part of a preprocessing
28982898
:class:`sklearn.pipeline.Pipeline`).
28992899
2900-
QuantileTransformer : Maps data to a standard normal distribution with
2900+
quantile_transform : Maps data to a standard normal distribution with
29012901
the parameter `output_distribution='normal'`.
29022902
29032903
Notes

0 commit comments

Comments
 (0)