@@ -144,7 +144,7 @@ def cross_validate(estimator, X, y=None, groups=None, scoring=None, cv=None,
144
144
Examples
145
145
--------
146
146
>>> from sklearn import datasets, linear_model
147
- >>> from sklearn.model_selection import cross_val_score
147
+ >>> from sklearn.model_selection import cross_validate
148
148
>>> from sklearn.metrics.scorer import make_scorer
149
149
>>> from sklearn.metrics import confusion_matrix
150
150
>>> from sklearn.svm import LinearSVC
@@ -153,15 +153,17 @@ def cross_validate(estimator, X, y=None, groups=None, scoring=None, cv=None,
153
153
>>> y = diabetes.target[:150]
154
154
>>> lasso = linear_model.Lasso()
155
155
156
- # single metric evaluation using cross_validate
156
+ Single metric evaluation using ``cross_validate``
157
+
157
158
>>> cv_results = cross_validate(lasso, X, y, return_train_score=False)
158
159
>>> sorted(cv_results.keys()) # doctest: +ELLIPSIS
159
160
['fit_time', 'score_time', 'test_score']
160
161
>>> cv_results['test_score'] # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
161
162
array([ 0.33..., 0.08..., 0.03...])
162
163
163
- # Multiple metric evaluation using cross_validate
164
- # (Please refer the ``scoring`` parameter doc for more information)
164
+ Multiple metric evaluation using ``cross_validate``
165
+ (please refer the ``scoring`` parameter doc for more information)
166
+
165
167
>>> scores = cross_validate(lasso, X, y,
166
168
... scoring=('r2', 'neg_mean_squared_error'))
167
169
>>> print(scores['test_neg_mean_squared_error']) # doctest: +ELLIPSIS
0 commit comments