-
-
Notifications
You must be signed in to change notification settings - Fork 26.3k
Closed
Description
Description
I'm implementing a binary classifier. To support multi-class problems, I copied the approach from Gaussian process classification: if n_classes > 2, wrap the binary classifier in a OneVsOneClassifier
or OneVsRestClassifier
.
However, this is incompatible with me adding additional arguments to fit()
, because the wrappers don't forwards these arguments to the wrapped binary classifier.
AIUI the fix would be to change all fit(X, y)
methods in sklearn.multiclass
to fit(X, y, **kwargs)
, and pass that new argument to the wrapped.fit(X, y, **kwargs)
call.
Should I simply create a merge request, or am I missing something?
Versions
Linux-4.18.5-arch1-1-ARCH-x86_64-with-arch
Python 3.7.0 (default, Jul 15 2018, 10:44:58)
[GCC 8.1.1 20180531]
NumPy 1.15.0
SciPy 1.1.0
Scikit-Learn 0.19.2
Metadata
Metadata
Assignees
Labels
No labels