Closed
Description
Describe the bug
When having predefined categories for the OneHotEncoder the categories get cut off. This lead to an error when trying to transform samples with the categories present....
Steps/Code to Reproduce
from sklearn.preprocessing import OneHotEncoder
import numpy as np
from sklearn.preprocessing import OneHotEncoder
# I know all my categories in advance and there will be no other
# Using only one sample to call fit since I need to call at some point
list_of_bounds = [["as","mmas","eas","ras","acs"], ["1", "2"]]
one_sample = ["as", "1"]
o_h_enc = OneHotEncoder(categories=list_of_bounds)
o_h_enc.fit(np.array(one_sample).reshape(1, -1) )
print(o_h_enc.categories_)
# [array(['as', 'mm', 'ea', 'ra', 'ac'], dtype='<U2'), array(['1', '2'], dtype='<U2')]
# The first category should be dtype object and contain the full names i.e.
# [array(["as","mmas","eas","ras","acs"], dtype='object'), array(['1', '2'], dtype='<U2')]
o_h_enc.transform(np.array(["mmas", "1"]).reshape((1, -1)))
Expected Results
[array(["as","mmas","eas","ras","acs"], dtype='object'), array(['1', '2'], dtype='<U2')]
Actual Results
Versions
Python dependencies:
sklearn: 1.2.0
pip: 21.1.2
setuptools: 57.0.0
numpy: 1.23.4
scipy: 1.9.3
Cython: None
pandas: None
matplotlib: 3.6.2
joblib: 1.2.0
threadpoolctl: 3.1.0
Built with OpenMP: True
None