diff --git a/sklearn/linear_model/least_angle.py b/sklearn/linear_model/least_angle.py index 3acb308cf3b92..dd47030308d40 100644 --- a/sklearn/linear_model/least_angle.py +++ b/sklearn/linear_model/least_angle.py @@ -606,7 +606,8 @@ def __init__(self, fit_intercept=True, verbose=False, normalize=True, self.copy_X = copy_X self.fit_path = fit_path - def _get_gram(self, precompute, X, y): + @staticmethod + def _get_gram(precompute, X, y): if (not hasattr(precompute, '__array__')) and ( (precompute is True) or (precompute == 'auto' and X.shape[0] > X.shape[1]) or diff --git a/sklearn/linear_model/tests/test_least_angle.py b/sklearn/linear_model/tests/test_least_angle.py index 8545ecd988399..9c9a883f96383 100644 --- a/sklearn/linear_model/tests/test_least_angle.py +++ b/sklearn/linear_model/tests/test_least_angle.py @@ -80,7 +80,6 @@ def test_simple_precomputed(): def test_all_precomputed(): # Test that lars_path with precomputed Gram and Xy gives the right answer - X, y = diabetes.data, diabetes.target G = np.dot(X.T, X) Xy = np.dot(X.T, y) for method in 'lar', 'lasso': @@ -188,7 +187,6 @@ def test_no_path_all_precomputed(): [linear_model.Lars, linear_model.LarsCV, linear_model.LassoLarsIC]) def test_lars_precompute(classifier): # Check for different values of precompute - X, y = diabetes.data, diabetes.target G = np.dot(X.T, X) clf = classifier(precompute=G)