diff --git a/sklearn/svm/classes.py b/sklearn/svm/classes.py index dbf5b78a1a6d1..0c98d9ffb5d3e 100644 --- a/sklearn/svm/classes.py +++ b/sklearn/svm/classes.py @@ -584,15 +584,22 @@ class SVC(BaseSVC): probA_ : array, shape = [n_class * (n_class-1) / 2] probB_ : array, shape = [n_class * (n_class-1) / 2] - If probability=True, the parameters learned in Platt scaling to - produce probability estimates from decision values. If - probability=False, an empty array. Platt scaling uses the logistic - function + If `probability=True`, it corresponds to the parameters learned in + Platt scaling to produce probability estimates from decision values. + If `probability=False`, it's an empty array. Platt scaling uses the + logistic function ``1 / (1 + exp(decision_value * probA_ + probB_))`` where ``probA_`` and ``probB_`` are learned from the dataset [2]_. For more information on the multiclass case and training procedure see section 8 of [1]_. + class_weight_ : ndarray of shape (n_class,) + Multipliers of parameter C for each class. + Computed based on the ``class_weight`` parameter. + + shape_fit_ : tuple of int of shape (n_dimensions_of_X,) + Array dimensions of training vector ``X``. + Examples -------- >>> import numpy as np @@ -778,6 +785,27 @@ class NuSVC(BaseSVC): classes_ : array of shape = (n_classes,) The unique classes labels. + fit_status_ : int + 0 if correctly fitted, 1 if the algorithm did not converge. + + probA_ : ndarray, shape of (n_class * (n_class-1) / 2,) + probB_ : ndarray of shape (n_class * (n_class-1) / 2,) + If `probability=True`, it corresponds to the parameters learned in + Platt scaling to produce probability estimates from decision values. + If `probability=False`, it's an empty array. Platt scaling uses the + logistic function + ``1 / (1 + exp(decision_value * probA_ + probB_))`` + where ``probA_`` and ``probB_`` are learned from the dataset [2]_. For + more information on the multiclass case and training procedure see + section 8 of [1]_. + + class_weight_ : ndarray of shape (n_class,) + Multipliers of parameter C of each class. + Computed based on the ``class_weight`` parameter. + + shape_fit_ : tuple of int of shape (n_dimensions_of_X,) + Array dimensions of training vector ``X``. + Examples -------- >>> import numpy as np