diff --git a/sklearn/neighbors/_base.py b/sklearn/neighbors/_base.py index 54cf473b2ab75..820b83eca1845 100644 --- a/sklearn/neighbors/_base.py +++ b/sklearn/neighbors/_base.py @@ -667,7 +667,7 @@ class from an array representing our data set and ask who's if self.effective_metric_ == 'precomputed': X = _check_precomputed(X) else: - X = check_array(X, accept_sparse='csr') + X = self._validate_data(X, accept_sparse='csr', reset=False) else: query_is_train = True X = self._fit_X @@ -982,7 +982,7 @@ class from an array representing our data set and ask who's if self.effective_metric_ == 'precomputed': X = _check_precomputed(X) else: - X = check_array(X, accept_sparse='csr') + X = self._validate_data(X, accept_sparse='csr', reset=False) else: query_is_train = True X = self._fit_X diff --git a/sklearn/neighbors/_classification.py b/sklearn/neighbors/_classification.py index 9cd08e0c39a1d..71b869977f6aa 100644 --- a/sklearn/neighbors/_classification.py +++ b/sklearn/neighbors/_classification.py @@ -17,7 +17,6 @@ from ._base import _check_weights, _get_weights from ._base import NeighborsBase, KNeighborsMixin, RadiusNeighborsMixin from ..base import ClassifierMixin -from ..utils import check_array from ..utils.validation import _deprecate_positional_args @@ -192,7 +191,7 @@ def predict(self, X): y : ndarray of shape (n_queries,) or (n_queries, n_outputs) Class labels for each data sample. """ - X = check_array(X, accept_sparse='csr') + X = self._validate_data(X, accept_sparse='csr', reset=False) neigh_dist, neigh_ind = self.kneighbors(X) classes_ = self.classes_ @@ -236,7 +235,7 @@ def predict_proba(self, X): The class probabilities of the input samples. Classes are ordered by lexicographic order. """ - X = check_array(X, accept_sparse='csr') + X = self._validate_data(X, accept_sparse='csr', reset=False) neigh_dist, neigh_ind = self.kneighbors(X) @@ -545,7 +544,7 @@ def predict_proba(self, X): by lexicographic order. """ - X = check_array(X, accept_sparse='csr') + X = self._validate_data(X, accept_sparse='csr', reset=False) n_queries = _num_samples(X) neigh_dist, neigh_ind = self.radius_neighbors(X) diff --git a/sklearn/neighbors/_nca.py b/sklearn/neighbors/_nca.py index 8920b2d99ed02..a4ef02b687d97 100644 --- a/sklearn/neighbors/_nca.py +++ b/sklearn/neighbors/_nca.py @@ -263,7 +263,7 @@ def transform(self, X): """ check_is_fitted(self) - X = check_array(X) + X = self._validate_data(X, reset=False) return np.dot(X, self.components_.T) diff --git a/sklearn/neighbors/_nearest_centroid.py b/sklearn/neighbors/_nearest_centroid.py index ededb2afd877a..0c726cdc0a62c 100644 --- a/sklearn/neighbors/_nearest_centroid.py +++ b/sklearn/neighbors/_nearest_centroid.py @@ -15,7 +15,7 @@ from ..base import BaseEstimator, ClassifierMixin from ..metrics.pairwise import pairwise_distances from ..preprocessing import LabelEncoder -from ..utils.validation import check_array, check_is_fitted +from ..utils.validation import check_is_fitted from ..utils.validation import _deprecate_positional_args from ..utils.sparsefuncs import csc_median_axis_0 from ..utils.multiclass import check_classification_targets @@ -201,6 +201,6 @@ def predict(self, X): """ check_is_fitted(self) - X = check_array(X, accept_sparse='csr') + X = self._validate_data(X, accept_sparse='csr', reset=False) return self.classes_[pairwise_distances( X, self.centroids_, metric=self.metric).argmin(axis=1)] diff --git a/sklearn/neighbors/_regression.py b/sklearn/neighbors/_regression.py index 9bf28f037294a..d3878cd54aa06 100644 --- a/sklearn/neighbors/_regression.py +++ b/sklearn/neighbors/_regression.py @@ -17,7 +17,6 @@ from ._base import _get_weights, _check_weights from ._base import NeighborsBase, KNeighborsMixin, RadiusNeighborsMixin from ..base import RegressorMixin -from ..utils import check_array from ..utils.validation import _deprecate_positional_args from ..utils.deprecation import deprecated @@ -203,7 +202,7 @@ def predict(self, X): y : ndarray of shape (n_queries,) or (n_queries, n_outputs), dtype=int Target values. """ - X = check_array(X, accept_sparse='csr') + X = self._validate_data(X, accept_sparse='csr', reset=False) neigh_dist, neigh_ind = self.kneighbors(X) @@ -392,7 +391,7 @@ def predict(self, X): dtype=double Target values. """ - X = check_array(X, accept_sparse='csr') + X = self._validate_data(X, accept_sparse='csr', reset=False) neigh_dist, neigh_ind = self.radius_neighbors(X) diff --git a/sklearn/tests/test_common.py b/sklearn/tests/test_common.py index b900f94231419..864607beb8c7e 100644 --- a/sklearn/tests/test_common.py +++ b/sklearn/tests/test_common.py @@ -279,7 +279,6 @@ def test_search_cv(estimator, check, request): 'multiclass', 'multioutput', 'naive_bayes', - 'neighbors', 'pipeline', 'random_projection', 'semi_supervised',