diff --git a/sklearn/model_selection/tests/test_search.py b/sklearn/model_selection/tests/test_search.py index af2ca92aee26b..5e63716164b6f 100644 --- a/sklearn/model_selection/tests/test_search.py +++ b/sklearn/model_selection/tests/test_search.py @@ -14,7 +14,6 @@ import pytest from sklearn.utils._testing import ( - assert_raises, assert_warns, assert_warns_message, assert_raise_message, @@ -177,7 +176,8 @@ def test_parameter_grid(): assert len(empty) == 1 assert list(empty) == [{}] assert_grid_iter_equals_getitem(empty) - assert_raises(IndexError, lambda: empty[1]) + with pytest.raises(IndexError): + empty[1] has_empty = ParameterGrid([{'C': [1, 10]}, {}, {'C': [.5]}]) assert len(has_empty) == 4 @@ -207,7 +207,8 @@ def test_grid_search(): # Test exception handling on scoring grid_search.scoring = 'sklearn' - assert_raises(ValueError, grid_search.fit, X, y) + with pytest.raises(ValueError): + grid_search.fit(X, y) def test_grid_search_pipeline_steps(): @@ -408,7 +409,8 @@ def test_grid_search_error(): clf = LinearSVC() cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) - assert_raises(ValueError, cv.fit, X_[:180], y_) + with pytest.raises(ValueError): + cv.fit(X_[:180], y_) def test_grid_search_one_grid_point(): @@ -464,7 +466,8 @@ def test_grid_search_bad_param_grid(): param_dict = {"C": np.ones((3, 2))} clf = SVC() - assert_raises(ValueError, GridSearchCV, clf, param_dict) + with pytest.raises(ValueError): + GridSearchCV(clf, param_dict) def test_grid_search_sparse(): @@ -548,7 +551,8 @@ def test_grid_search_precomputed_kernel(): # test error is raised when the precomputed kernel is not array-like # or sparse - assert_raises(ValueError, cv.fit, K_train.tolist(), y_train) + with pytest.raises(ValueError): + cv.fit(K_train.tolist(), y_train) def test_grid_search_precomputed_kernel_error_nonsquare(): @@ -558,7 +562,8 @@ def test_grid_search_precomputed_kernel_error_nonsquare(): y_train = np.ones((10, )) clf = SVC(kernel='precomputed') cv = GridSearchCV(clf, {'C': [0.1, 1.0]}) - assert_raises(ValueError, cv.fit, K_train, y_train) + with pytest.raises(ValueError): + cv.fit(K_train, y_train) class BrokenClassifier(BaseEstimator): @@ -1472,7 +1477,8 @@ def test_grid_search_failing_classifier_raise(): refit=False, error_score='raise') # FailingClassifier issues a ValueError so this is what we look for. - assert_raises(ValueError, gs.fit, X, y) + with pytest.raises(ValueError): + gs.fit(X, y) def test_parameters_sampler_replacement():