diff --git a/sklearn/semi_supervised/tests/test_label_propagation.py b/sklearn/semi_supervised/tests/test_label_propagation.py index 652f83b90a3d6..9f355281d9881 100644 --- a/sklearn/semi_supervised/tests/test_label_propagation.py +++ b/sklearn/semi_supervised/tests/test_label_propagation.py @@ -4,8 +4,6 @@ import pytest from scipy.sparse import issparse -from sklearn.utils._testing import assert_warns -from sklearn.utils._testing import assert_no_warnings from sklearn.semi_supervised import _label_propagation as label_propagation from sklearn.metrics.pairwise import rbf_kernel from sklearn.model_selection import train_test_split @@ -143,18 +141,25 @@ def test_convergence_warning(): X = np.array([[1., 0.], [0., 1.], [1., 2.5]]) y = np.array([0, 1, -1]) mdl = label_propagation.LabelSpreading(kernel='rbf', max_iter=1) - assert_warns(ConvergenceWarning, mdl.fit, X, y) + warn_msg = ('max_iter=1 was reached without convergence.') + with pytest.warns(ConvergenceWarning, match=warn_msg): + mdl.fit(X, y) assert mdl.n_iter_ == mdl.max_iter mdl = label_propagation.LabelPropagation(kernel='rbf', max_iter=1) - assert_warns(ConvergenceWarning, mdl.fit, X, y) + with pytest.warns(ConvergenceWarning, match=warn_msg): + mdl.fit(X, y) assert mdl.n_iter_ == mdl.max_iter mdl = label_propagation.LabelSpreading(kernel='rbf', max_iter=500) - assert_no_warnings(mdl.fit, X, y) + with pytest.warns(None) as record: + mdl.fit(X, y) + assert len(record) == 0 mdl = label_propagation.LabelPropagation(kernel='rbf', max_iter=500) - assert_no_warnings(mdl.fit, X, y) + with pytest.warns(None) as record: + mdl.fit(X, y) + assert len(record) == 0 @pytest.mark.parametrize("LabelPropagationCls", @@ -170,7 +175,9 @@ def test_label_propagation_non_zero_normalizer(LabelPropagationCls): mdl = LabelPropagationCls(kernel='knn', max_iter=100, n_neighbors=1) - assert_no_warnings(mdl.fit, X, y) + with pytest.warns(None) as record: + mdl.fit(X, y) + assert len(record) == 0 def test_predict_sparse_callable_kernel():